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Abstract

Change detection (CD) in time series data is a critical problem as it reveal
changes in the underlying generative processes driving the time series. Despite
having received significant attention, one important unexplored aspect is how to
efficiently utilize additional correlated information to improve the detection and
the understanding of changepoints. We propose hierarchical quickest change de-
tection (HQCD), a framework that formalizes the process of incorporating addi-
tional correlated sources for early changepoint detection. The core ideas behind
HQCD are rooted in the theory of quickest detection and HQCD can be regarded
as its novel generalization to a hierarchical setting. The sources are classified into
targets and surrogates, and HQCD leverages this structure to systematically assim-
ilate observed data to update changepoint statistics across layers. The decision on
actual changepoints are provided by minimizing the delay while still maintaining
reliability bounds. In addition, HQCD also uncovers interesting relations between
changes at targets from changes across surrogates. We validate HQCD for reliability
and performance against several state-of-the-art methods for both synthetic dataset
(known changepoints) and several real-life examples (unknown changepoints). Our
experiments indicate that we gain significant robustness without loss of detection
delay through HQCD. Our real-life experiments also showcase the usefulness of the
hierarchical setting by connecting the surrogate sources (such as Twitter chatter) to
target sources (such as Employment related protests that ultimately lead to major
uprisings).

1 Introduction

With the increasing availability of digital data sources, there is a concomitant interest in
using such sources to understand and detect events of interest, reliably and rapidly. For
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Table 1: Comparison of state-of-the-art methods vs Hierarchical Quickest Change Detection

Desirable Sequential Window- Bayesian Relative Hierarchical HQCD
Properties GLRT Limited Online Density- Bayesian (This

1963 GLRT CPD ratio Analysis of Paper)
1995 1995 2007 Estimation Change

2010 (RuLSIF) Point
2013 Problems

1992

Online X X X X X

Hierarchical X X

Bounded False
Alarm Rate / X X X X
Detection delay

Handles X
Non-IID data

instance, protest uprisings in unstable countries can be better analyzed by considering
a variety of sources such as economic indicators (e.g. inflation, food prices) and social
media indicators (e.g. Twitter and news activity). Concurrently, detecting the onset of
such events with minimal delay is of critical importance. For instance, detecting a disease
outbreak (Painter, Eaton, and Lober, 2013) in real time can help in triggering preventive
measures to control the outbreak. Similarly, early alerts about possible protest uprisings
can help in designing traffic diversions and enhanced security to ensure peaceful protests.
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Figure 1: Illustrative example showing surrogate sources which could have led to an early detection of
onset of 2013 Brazilian spring protests. (Top) Total protest counts in Brazil over Apr’13 to Aug’13
exhibiting a sharp increase around mid-June. (Middle) Employment and Wages related protests and
(bottom) aggregated counts of a clusters of protest related keywords in Twitter.

Consider the evolution of the Brazilian Spring protests during mid June 2013 which
are shown in terms of the total number of protests per week as in Fig. 1 (top panel).
This uprising can be further analyzed by looking at individual categories of protests
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as shown in Fig. 1 (middle panel). As seen, during the Brazilian Spring there was a
sharp increase in employment and wages related protests. It is noteworthy that similar
observations can be made from Fig. 1 by observing the increase in Twitter activity
for protest related keywords (bottom panel) such as “Aborto, Agravar, Central Dos
Trabalhadores e Trabalhadoras Do Brasil” during early June. This example leads to the
following important observations: there is potentially significant correlated information
that can be leveraged to reduce detection delay, and identifying the informative data
source(s) can help reduce the false positives. Thus, appropriate usage of such surrogate
information can potentially lead to change detection with improved performance as well
offer an interpretation behind the cause of the changepoint.

Motivated by the aforementioned observations, we propose Hierarchical Quickest
Change Detection (HQCD), for online change detection across multiple sources, viz. tar-
get and surrogates. Typically, targets are sources of imminent interest (such as disease
outbreaks or civil unrest); whereas surrogates (such as counts of the word ‘protesta’
in Twitter) by themselves are not of significant interest. Thus, HQCD is aimed to-
wards continuously utilizing both categories, but more focused on early (or quickest)
detection of significant changes across the target sources. Traditional event (or change)
detection approaches are not suitable for such problems. These are either a) offline ap-
proaches (Carlin et al, 1992; Page, 1954; Shewhart, 1925; Wald, 1945) using the entire
data retrospectively - thus not applicable to real-time scenarios, or b) online detection
approaches (Adams and MacKay, 2007; Lai, 1995; Lai and Xing, 2010; Liu et al, 2013;
Shiryaev, 1963; Siegmund and Venkatraman, 1995) with primary focus on the target
source of interest and do not utilize other correlated sources. Table 1 shows a compari-
son of HQCD and several state-of-the-art methods in terms of the desirable attributes.

The main contributions of this paper are:
• HQCD formalizes a hierarchical structure which in addition to the observed set of target
sources (i.e., Si’s), incorporates additional surrogates, denoted by Kj ’s, and encodes
propagation of change from surrogate to target sources.
• HQCD presents a specialized change detection metric that guarantees a maximum level
of false alarm rate while reducing the detection delay in quickest detection framework.
In addition, HQCD yields a natural methodology for analyzing the causality of change in
a particular target source through a sequence of change propagations in other sources.
• HQCD presents a specialized sequential Monte Carlo based change detection framework
that along with specialized change detection metrics enables hierarchical data to be
analyzed in online fashion.
•We extensively test HQCD on both synthetic and real world data. We compare against
state-of-the-art methods and illustrate the robustness of our methods and the usefulness
of surrogates. We also present a detailed analysis of three protest uprisings using real
world data and show that the uprising could have been predicted a few weeks in advance
by incorporating surrogate data such as Twitter chatter. Moreover, we analyzed target-
surrogate relationships and uncover important propagation patterns that led to such
uprisings.
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2 HQCD–Hierarchical Quickest Change Detection

We first provide a brief overview of classical QCD problem and then present the HQCD
framework.

2.1 Quickest Change Detection (QCD)

Let us consider a data source S changing over time and following different stochastic
processes before and after an unknown time Γ (changepoint). The task of QCD is
to produce an estimate Γ̂ = γ in an online setting (i.e., at time t, only S1, . . . , St is
available). Figure 2 illustrates the two fundamental performance metrics related to this
problem. In the figure, Γ = t4 is the actual time-point when the changepoint happened.
An early estimate such as γ1 = t1 in the figure leads to a false alarm, where another
estimate, such as γ2 = t6 leads to an ‘additive delay’ of γ2 − Γ = t6 − t4. The goal of
QCD is to design an online detection strategy which minimizes the expected additive
detection delay (EADD) while not exceeding a maximum pre-specified probability of
false alarm (PFA). QCD has been studied in various contexts. Some of the foremost
methods have considered i.i.d. distributions with known (or unknown) parameters before
and after unknown changepoints (Veeravalli and Banerjee, 2013). Some of the more
popular methods have used CUSUM (cumulative sum of likelihood) based tests while
more general approaches are adapted in GLRT (generalized likelihood ratio test) based
methods (Dessein and Cont, 2013).
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Figure 2: Illustration of Quickest Change Detection (QCD): blue colored line represents the actual
changepoint at time Γ = t4. (a) declaring a change at γ1 leads to a false alarm, whereas (b) declaring
the change at γ2 leads to detection delay. QCD can strike a tradeoff between false alarm and detection
delay.

2.2 Changepoint detection in Hierarchical Data

We next present our approach to generalize QCD to a hierarchical setting. We first
describe a generic hierarchical model and then propose the QCD statistics for such
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Figure 3: Generative process for HQCD. As an example consider civil unrest protests. In the framework,
different protest types (such as Education- and Housing-related protests) form the targets denoted by
Si’s. The total number of protests will be denoted by the top-most variable E. Finally, the set of
surrogates, such as counts of Twitter keywords, stock price data, weather data, network usage data etc.
are denoted by Kj ’s.

models in Section 2.2.2. For computational feasibility, we present a bounded approximate
of the same and our multilevel changepoint algorithm in Section 2.2.3.

2.2.1 Generic Hierarchical Model

Let us consider S̄(T ), a set of I correlated temporal sequences {S(T )
1 , S

(T )
2 , . . . S

(T )
I }

where, S
(T )
i represents the ith target data sequence S

(T )
i = [si(1), si(2), . . . , si(T )] for

i = 1, . . . , I, collected up and until some time T . The cumulative sum of the target
sources Si’s at time t is given by E(t), i.e., E(t) =

∑I
i=1 si(t). Concurrent to target

sources, we also observe a set of J surrogate sources, K̄(T ) = {K(T )
1 ,K

(T )
2 , . . . ,K

(T )
J },

where K
(T )
j = [kj(1), kj(2), . . . , kj(T )], for j = 1, . . . , J , which may either have a causal

or effectual relationship with the target source set S̄(T ) (see Figure 3). We assume that
targets and surrogates follow a stochastic Markov process as follows:

P (S̄(T ), K̄(T )) =P (S
(T )
1 , . . . , S

(T )
I ,K

(T )
1 , . . . ,K

(T )
J )

=
T∏
t=1

{
J∏
j=1

P
φKj
t (Kj(t))×

I∏
i=1

P
φSi
t

(
Si(t)|S̄(t−1), K̄(t−1)

)}
.

The binary variables φKj , φ
S
i ∈ {0, 1} capture the notion of significant changes in events

through changes in distribution of the generative process as follows: if the surrogate
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source Kj undergoes a change in distribution at some time t, then, φKj changes from 0

to 1. In other words, P 0
t (Kj) (respectively P 1

t (Kj)) denotes the pre-change (post-change)
distribution of the jth surrogate source. Similarly, if the target source Si undergoes a
change in distribution at some time t, then φSi changes from 0 to 1. In other words,
P 0
t (Si|·) (respectively P 1

t (Si|·)) denotes the pre-change
(post-change) conditional distribution of the jth target data source. We denote ΓKj (re-
spectively ΓSi) as the random variable denoting the time at which φKj (respectively, φSi )

changes from 0 to 1. Finally, we write Γ̄K̄ = (ΓK1 , . . . ,ΓKJ ), and Γ̄S̄ = (ΓS1 , . . . ,ΓSI )
as the collective sets of changepoints in the surrogate and target sources, respectively.
Finally, denote ΓE as the changepoint random variable for the top layer, E, which rep-
resents the sum total of all target sources.

2.2.2 From QCD to HQCD

We extend the concepts of QCD presented in Section 2.1 to multilevel setting by formal-
izing the problem as the earliest detection of the set of all (J + I + 1) changepoints, i.e.,
Γ̄ = {Γ̄K̄, Γ̄S̄,ΓE} having observed the target and surrogate sources i.e.

(
S̄(T ), K̄(T )

)
.

Let γ̄ = {γ̄K̄, γ̄S̄, γE} be the (J + I+ 1) vector of decision variables for the changepoints.
To measure detection performance, we define the following two novel performance crite-
ria:

Multi-Level Probability-of-False-Alarm (ML-PFA):

ML-PFA(γ̄) = P
(
γ̄ � Γ̄

)
, (1)

where for any two N length vectors a � b, the notation implies ai ≤ bi, for i = 1, . . . , N .
For instance, consider the example of I = 1 target, and J = 1 surrogate. Then Γ̄ =
(ΓK1 ,ΓS1) and γ = (γK1 , γS1), and the probability of multi-level false alarm is given by
ML-PFA(γ) = P(γK1 ≤ ΓK1 , γS1 ≤ ΓS1). This definition of ML-PFA declares a false
alarm only if all the (J + I + 1) change decision variables are smaller than the true
changepoints.
Expected Additive Detection Delay (EADD):

EADD(γ) = E
(
|γ − Γ̄|1

)
=

J∑
j=1

E(|γKj
− ΓKj

|)
︸ ︷︷ ︸
Surrogate layer delay

+
I∑

i=1

E(|γSi
− ΓSi

|)︸ ︷︷ ︸
Target layer delay

+ E|γE − ΓE |︸ ︷︷ ︸
Top layer delay

(2)

Given the observations, i.e., all target and surrogate sources (S̄(T ), K̄(T )) till time T
governed by unknown changepoints Γ̄, we aim to make an optimal decision γ about
these changepoints under the following criterion

γ∗(α) = arg min
γ

EADD(γ) s.t. ML-PFA(γ) ≤ α. (3)

In other words, γ∗(α) is the optimal change decision vector which minimizes the EADD
while guaranteeing that the ML-PFA is no more than a tolerable threshold α. We note
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that the above optimal test is challenging to implement for real-world data sets due to
following issues: a) it requires the knowledge of pre- and post- change distributions (for
all sources) and the distribution of the changepoint random vector Γ̄, b) unlike single
source QCD, finding the optimal γ∗(α) requires a multi-dimensional search over multiple
sources, making it computationally expensive, and c) it does not discriminate between
false alarms across different sources. For instance, declaring false alarm at a target source
(such as premature declaration of the onset of protests or disease outbreaks) must be
penalized more in comparison to declaring false alarm at a surrogate source (such as
incorrectly declaring rise in Twitter activity).

2.2.3 Bounded approximation of HQCD

We can circumvent the problem (b) of the original definition of ML-PFA as given in
equation 1 by upper bounding it in Theorem 2.1.

Theorem 2.1 (Modified-PFA). Let γ̄ = {γ̄S, γ̄K, γE} be the a set of estimates about
true changepoint for targets, surrogates and sum-of-targets, respectively. Then under the
condition of greater importance to accurate target layer detections, ML-PFA (see 1) is
upper-bounded by Modified-PFA, where:

Modified-PFA(γ) , I ×max
i

P(γSi ≤ ΓSi) + min
j

P(γKj ≤ ΓKj ) + P(γE ≤ ΓE) (4)

Proof. We can prove the upper bound of ML-PFA with the following reductions:

ML-PFA(γ) = P(γ � Γ)
= P(γS̄ � ΓS̄, γK̄ � ΓK̄, γE ≤ ΓE)
(a)

≤ P(γS̄ � ΓS̄) + P(γK̄ � ΓK̄) + P(γE ≤ ΓE)
(b)

≤ ∑I
i=1 P(γSi ≤ ΓSi) + P(γK̄ � ΓK̄) + P(γE ≤ ΓE)

≤ I ×max
i

P(γSi ≤ ΓSi) + P(γK̄ � ΓK̄) + P(γE ≤ ΓE)

(c)

≤ I ×max
i

P(γSi ≤ ΓSi) + min
j

P(γKj ≤ ΓKj ) + P(γE ≤ ΓE),

(5)

where (a) and (b) follows from the union bound on probability and (c) follows from
the fact that the joint probability of a set of events is less than the probability of any
one event, i.e., P(γK̄ � ΓK̄) ≤ P(γKj ≤ ΓKj ), for any j = 1, . . . , J , and then taking
the minimum over all j. The resulting upper bound in (5) leads to the basis of the
modification of the multi-level PFA:

Modified-PFA(γ) , I ×max
i

P(γSi ≤ ΓSi) + min
j

P(γKj ≤ ΓKj ) + P(γE ≤ ΓE)

�

Modified-PFA expression leads to intuitive interpretations as follows: (i) as false
alarms at targets can have a higher impact, it is desirable to keep the worst case PFA
across these to be the smallest, or equivalently, maxi P(γSi ≤ ΓSi) should be minimized.
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(ii) false alarms at surrogates are not as impactful and we can declare a false alarm if
all of the surrogate level detection(s) are unreliable, or equivalently, minj P(γKj ≤ ΓKj )
needs to be minimized. (iii) notably, the above modification leads to a low-complexity
change detection approach across multiple sources by locally optimal detection strategies
avoiding a multi-dimensional search.

Based on Modified-PFA, we next present a compact test suite to declare changes at
pre-specified levels of maximum PFA as given in Theorem 2.2 and incorporate specificity
issues pointed out in problem (c) of the original formulation of PFA.

Theorem 2.2 (Multi-level Change Detection). Let ΓSi be the true change point ran-
dom variable for the ith target source, Si. Let ΓKj and ΓE represent the same for the
jth surrogate and the sum-of-targets, respectively. Let the data observed till time T be
D(T ) ,

(
S̄(T ), K̄(T )

)
and P (Γ̄|D(T )) denote the estimate of the conditional distribution

(see Section 3.2). Then, if αi, βj , λ represent the PFA thresholds for the Si,Kj , E, the
changepoint tests can be given as:

γSi(αi) = inf

{
n : TSSi(D

(T )) ≥ αi
1 + αi

}
, i = 1, . . . , I (6a)

γKj (βj) = inf

{
n : TSKj (D

(T )) ≥ βj
1 + βj

}
, j = 1, . . . , J (6b)

γE(λ) = inf

{
n : TSE(D(T )) ≥ λ

1 + λ

}
, (6c)

where TSX(D(T )) = P(ΓX ≤ n|D(T )) is the test statistic (TS) for a source X.

Proof. In quickest change detection, our goal at time T is to decide if a change should
be declared for some n ≤ T for a particular data source. To this end, we can use the
following change detection test

γSi(αi) = inf

n : log

P
(
ΓSi ≤ n|D(T )

)
P
(

ΓSi > n|D(T )
)
 ≥ log(αi)

 ,

which is equivalent to the following test:

γSi(αi) = inf

{
n : P

(
ΓSi ≤ n|D(T )

)
≥ αi

1 + αi

}
. (7)

Intuitively, the above test declares the change for the ith target source Si at the smallest
time n for which the test statistic (i.e., posterior probability of the change point random
variable being less than n) exceeds a threshold. The probability of false alarm for the
above test can be bounded in terms of the threshold αi as:

P(γSi ≤ ΓSi) =
∑

D(T )

∑
n P(D(T ), γSi = n)P(ΓSi > n|D(T ), γSi = n)

(d)

≤
∑
D(T )

∑
n

P(D(T ), γSi = n)︸ ︷︷ ︸
=1

(
1

1+αi

)

= 1
1+αi

,

(8)
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where (d) follows from the fact that given the observed data and the event, γSi = n,
i.e., the change is declared at n, then it follows from (equation 7) that

P(ΓSi > n|D(T ), γSi = n) ≤ 1/(1 + αi)

Let us denote the test statistic (TS) for a data source X as:

TSX(D(T )) = P(ΓX ≤ n|D(T ))

Then, then the multi-level change detection test is:

γSi(αi) = inf{n : TSSi(D
(T )) ≥ αi

1 + αi
}, i = 1, . . . , I

γKj (βj) = inf{n : TSKj (D
(T )) ≥ βj

1 + βj
}, j = 1, . . . , J

γE(λ) = inf{n : TSE(D(T )) ≥ λ

1 + λ
}

�

From Theorem 2.2, we can infer the following boundedness property of Modified-PFA
as expressed in the following Lemma.

Lemma 2.3. If we define α
∆
= mini(αi) and β

∆
= maxj(βj), then Modified-PFA in

equation 4 can be bounded as:

Modified-PFA(γ) ≤ I × 1

1 + α
+

1

1 + β
+

1

1 + λ
(10)

3 HQCD for Protest Detection via Surrogates

In this section we discuss the HQCD framework for early detection of protest uprisings
via surrogate sources. Protests can happen in civil society for various reasons such as
protests against fare hike or protests demanding more job opportunities. Such protests,
especially major changes in protest base levels, are potentially interlinked. However
explaining such interactions is a non-trivial process. Ramakrishnan, Butler, Muthiah
et al (2014) found several social sources, especially Twitter chatter, to capture protest
related information. We apply HQCD to find significant changes in protests concurrent
to changes in Twitter chatter, such that detecting changes accurately are of primary
importance in contrast to the chatters which can be influenced by a range of factors,
including protests. In general, HQCD can be applied in similar events, such as disease
outbreaks, to find significant changes in targets using information from noisy surrogates.

3.1 Hierarchical Model for Protest Count Data

For the case of protest uprisings, we first note that surrogate sources such as Twitter
are in general noisy and involve a complex interplay of several factors - one of which
could be protest uprisings. Furthermore, for protest uprisings, we are more concerned

9



Algorithm 1: HQCD Multi-level Change Point Detection Algorithm

Input : At time T , Target and Surrogate Sources D(T ) =
(
S(T ),K(T )

)
Parameters: PFA threshold for targets (α), surrogates (β), and sum of targets (λ)
Output : Changepoint Decisions γ̄S, γ̄K, γE at each timepoint T

1 for each T do

2 Update joint posteriorP (ΓK ,ΓS ,ΓE |D(T ))
// target change detection

3 for i← 1 to I do

4 Compute target marginal P (ΓSi |D(T ))
5 Find γSi(α) using 6a

6 γ̄S ← {γS1(α), . . . , γSI (α)}
// surrogate change detection

7 for j ← 1 to J do

8 Compute surrogate marginal P (ΓKj |D(T ))
9 Find γKj (β) using 6a

10 γ̄K ← {γK1(β), . . . , γKJ (β)}
// sum-of-targets change detection

11 Compute sum-of-targets marginal P (ΓE |D(T ))
12 Find γE(λ) using 6c
13 Return Decision γ̄S, γ̄K, γE(λ) at T

in using the surrogates (Twitter chatter) to help declare changes at target level (protest
counts) than accurately identifying the changes in surrogates. Thus, without loss of
generality, we model the surrogates as i.i.d. distributed variables. Figure 4) evaluates
the i.i.d. assumptions, for both protest counts and Twitter chatter. Our results indicate
that Log-normal is a reasonable fit for Twitter chatter.
Surrogate Sources: Formally, we assume that the jth surrogate source Kj is generated

i.i.d. from a distribution fK w.r.t to the associated changepoint ΓKj as:

kj(t)
i.i.d∼

{
fK(φ

Kj
0 ) t ≤ ΓKj

fK(φ
Kj
1 ) t > ΓKj

(11)

where, φ
Kj
0 and φ

Kj
1 are the pre- and post-change parameters. Following our earlier

discussion, we select fK as Log-normal (with location and scale parameters φKj =
{cKj , dKj}) for Twitter counts.
Target Sources: Target sources can in general be dependent on both the past values of
targets as well as the surrogates. Here, we restrict the target source process to be a first
order Markov process. Under this assumption, we formalize the ith target source Si to
follow a Markov process fSt w.r.t to its changepoint ΓSi as:

si(t) ∼
{
fSt (φSi0 (t)) t ≤ ΓSi
fSt (φSi1 (t)) t > ΓSi

(12)

where, φSi0 and φSi1 are the pre- and post-change parameters of the process. Poisson
process with dynamic rate parameters has been shown (Carlin et al, 1992) to be effec-
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Figure 4: Histogram fit of (a) surrogate source (Twitter keyword counts) and (b) target source (Num-
ber of protests of different categories), for various temporal windows, under i.i.d. assumptions. These
assumptions lead to satisfactory distribution fit, at a batch level, for both sources. The top-most row
corresponds to the period before the Brazilian spring (pre 2013-05-25), the second row is for the period
2013-05-25 to 2013-10-20, and the third is for the period after 2013-10-20. The last row shows the fit
for the entire period. These temporal fits are indicative of significant changes in distribution along the
Brazilian Spring timeline, for both target and surrogates.

tive in specifying hierarchical count data w.r.t changepoints. Here, we model the rate
parameters as a nested autoregressive process (Carlin et al, 1992; Fokianos, Rahbek, and
Tjøstheim, 2009) given as:

φSi0/1(t) = φSi0/1(t− 1) +
Ai

0/1
(t)

|Ai
0/1

(t)|

(
S(t− 1)

K(t− 1)

)
+N (0, σS)

Ai0/1(t) = Ai0/1(t− 1) +N (0,ΣAi)
(13)

Here, φS0/1(t) captures the latent rate and σS denotes the error variance. Ai0/1(t) captures
the variation due to the observed values of target and surrogates sources.
Changepoint Priors: Following our prior discussion, surrogate changepoints can be as-
sumed to have an uninformative prior and we model ΓKj via a memoryless arrival dis-
tribution (static probability of observing change given it hasn’t occurred earlier) as:

ΓKj ∼ Geom(ρKj )⇒ P (Kj = t|Kj ≥ t) = ρKj (14)

Conversely, target changepoints can be influenced by surrogate changepoints as their
generative process is dependent on the surrogates. Specifically, whenever we observe a
changepoint in the surrogates, we assume that the base rate of changepoint for a target
to increase for a certain period of time. Formally, target changepoint priors are assumed
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Figure 5: Computation time for one complete run of changepoint detection (in mins) on a 1.6 GHz quad
core 8gb intel i5 processor: Gibbs sampling (Carlin et al, 1992) vs HQCD vs HQCD without surrogates.
Gibbs sampling computation times are unsuitable for online detection.

to follow a dynamic process as:
ΓSi ∼ Geom(ρSi(t)) (15)

ρSi(t) = ρSi +
∑
j

I(ΓKj < t)µ1
je
−µ2j (t−ΓKj )

where, I is the indicator function. ρSi represents the nominal base rate for the change-
point. It can be seen, a change in the jth surrogate source is modeled as an exponentially
decaying ‘impulse’ of amplitude µ1

j . The summation of targets, E(t) is known determinis-
tically given Si(t). Moreover, given Si(t−1), E(t) can be considered to be summation of
independent Poisson processes following similar dynamics as equation 13 which is omit-
ted due to limited space. Similarly, relationships for dependence of ΓE can be modeled
to be dependent on K similar to equation 15.

3.2 Changepoint Posterior Estimation

Algorithm 1 involves posterior estimation of the changepoints given the data at a par-
ticular time point. Earlier works have focused mainly on offline methods such as Gibbs
Sampling (Carlin et al, 1992). Online posterior estimation for such problems have been
studied extensively in the context of Sequential Bayesian Inference (Casella and Berger,
2002) such as Kalman filters (Anderson, 2001; Kalman, 1960; Simon, 2010) (Gaussian
transitions) and Particle Filters (Del Moral, 1996; Doucet and Johansen, 2009; Pitt and
Shephard, 1999). Recently, Chopin et al. (Chopin, Jacob, and Papaspiliopoulos, 2013)
proposed a robust Particle Filter, SMC2 which is ideally suited for fitting the param-
eters of the non-linear hierarchical model described in Section 3.1. In this section we
formulate a Sequential Bayesian Algorithm that makes the HQCD tractable under real
world constraints (see Figure 5).

To find the posterior P
(
Γ̄S , Γ̄K ,ΓE |D(T )

)
at any time T using SMC2 we first cast

the model parameters and variables into the following three categories:

12



Observations (yT ): In the context of SMC2 these are the parameters that correspond to
observed variables at each time point T . For HQCD we can model yT as:

yT
∆
= {S(T ),K(T )} (16)

Hidden States (xT ): SMC2 estimates the observations based on interaction with hidden
states which are dynamic, unobserved and is sufficient to describe yT at T . For HQCD,
we can express xT as follows:

xT
∆
= {Γ̄S , Γ̄K ,ΓE , φ̄S0/1(T − 1), φ̄K0/1, (17)

ρ̄K(T ), ρ̄S(T ), Ā0/1, S(T − 1),K(T − 1)}
Static Parameters (θ): Finally, SMC2 also accommodates the concept of static parame-
ters which do not change over time such as the base probabilities of changepoint ρ̄S and
the noise matrix ΣA in HQCD. We can express θ as:

θ
∆
= {σS ,ΣA, ρ̄S, µ̄1, µ̄2} (18)

For a given set of such parameters, SMC2 works by first generating Nθ samples of θ
using the prior distribution P (θ). For each of these samples of θ, SMC2 samples NX

samples of x0 from its prior P (x0|θ). Following standard practices, we use conjugate
distributions (Casella and Berger, 2002) for the priors.

At each time point T , the samples are perturbed using the model equations given in
Section 3.1 and associated with weights w to estimate the joint posteriors as:

P (θ, xT |yT ) =
Nθ∑
q=1

Nx∑
r=1

wq,rδ(θ, xT )

P
(
Γ̄S , Γ̄K ,ΓE |D(T )

)
∝

Nθ∑
q=1

Nx∑
r=1

wq,rδ(Γ̄S , Γ̄K ,ΓE)

(19)

where, δ is the Kronecker-delta function. Algorithm 2 outlines the steps involved in this
process. For more details on SMC2 see Appendix.

4 Experiments

We present experimental results for both synthetic and real-world datasets, and compare
HQCD against several state-of-the-art online change detection methods (see Table 1),
specifically, GLRT (Siegmund and Venkatraman, 1995), W-GLRT (Lai and Xing, 2010),
BOCPD (Adams and MacKay, 2007) and RuLSIF (Liu et al, 2013). To further analyze
the effects of surrogates in detecting changepoints, we compare against HQCD without
surrogates, where K(t − 1) is dropped from equation 13 and ρSi(t) is made static (i.e.
independent of changepoints from surrogates) in equation 15.
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Algorithm 2: HQCD Changepoint Posterior estimation via SMC2

Input : At time T , yT as give in equation 16
Parameters: Prior distributions P (θ) and P (x0|θ)

Hyperparameters for P (θ) and P (x0|θ)
Output : joint posterior P (ΓK ,ΓS ,ΓE |D(T ))

1 Define xT as give in equation 17
2 Define θ as give in equation 18

// Initialization

3 Sample Nθ number of θq using P (θ)
4 Sample Nx number of x0q,r using P (x0|θq)
5 Update weights w(0) // See Appendix

// Online Learning

6 for each T do
// State Updates

7 for each q ∈ Nθ do
8 for each r ∈ Nx do
9 Update States: xTq,r from xT−1q,r

10 Compute Importance weights wq,r(T )
11 Compute observation probability P (yT |yT−1, θq)

// Incorporate observation at time T
12 Update Importance weight wq,r(T )← wq,r(T )P (yT |yT−1, θq)

// test premature convergence

13 Test degeneracy conditions using effective sample size
14 if degeneracy then

// markov kernel jumps

15 Update xTq,r by multiplying a markov Kernel KT
// recomputing weights

16 exchange xTq,r and set wqr ∝ 1

// Find joints

17 Return Update P (Γ̄S , Γ̄K ,ΓE |D(T )) using equation 19

14



Table 2: (Synthetic data) comparing true changepoint (Γ) for targets against detected changepoint (γ)
by HQCD against state-of-the-art methods for false alarm (FA) and additive detection delay (ADD).
Each row represent a target and best detected changepoint is shown in bold whereas false alarms are
shown in red.

True GLRT WGLRT BOCPD RuLSIF HQCD HQCD w/o surr.

Γ γ ADD γ ADD γ ADD γ ADD γ ADD γ ADD

S1 29 7 – 10 – 13 36 7 33 4 32 3
S2 6 11 5 14 8 16 10 28 22 8 2 9 3
S3 24 7 – 16 – 15 29 5 22 - 26 2
S4 26 5 – 11 – 11 38 12 27 1 31 5
S5 47 40 – 15 – 8 26 - 50 3 55 8
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Figure 6: Comparison of HQCD against state-of-the-art on simulated target sources. X-axis represents
time and Y-axis represents actual value. Solid blue lines refer to the true changepoint, solid green refers
to the ones detected by HQCD and brown refers to HQCD without surrogates. Dashed red, magenta,
purple and gold lines refer to changepoints detected by RuLSIF, WGLRT, BOCPD and GLRT, respectively.
HQCD shows better detection for most targets with low overall detection delay and false alarms.

4.1 Synthetic Data

In this section, we validate against synthetic datasets with known changepoint parame-
ters. For this, we pick 5 targets (I = 5) and 10 surrogates (J = 10). The surrogates were
generated from i.i.d. Log-normal distributions (see equation 11) while the targets were
generated using Poisson process (see equation 12). The changepoints for surrogates were
sampled from a fixed Gamma distribution (see 14) while the associated changepoints for
target sources were simulated via equation 15.

4.1.1 Comparisons with state-of-the-art

As true changepoints are known for the synthetic dataset, we can compare HQCD against
the state-of-the-art methods for the detected changepoint as shown in Figure 6. Table 2
presents the results in terms of the false alarm (FA) and additive detection delay (ADD).
From the table, we can see that HQCD is able to detect the changepoints with fewer false
alarms. Also HQCD has the lowest delay across all methods for all targets except Target-
1 for which HQCD without surrogates achieved better delay indicating the surrogates
are not informative for this target source.
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Figure 7: False Alarm vs Delay trade-off for different methods. HQCD shows the best trade-off.

4.1.2 Usefulness of Surrogates

Our comparisons with the state-of-the-art shows significant improvements that were
achieved by HQCD, both in terms of FA and ADD and showcase the importance of
systematically admitting surrogate information to attain a quicker change detection with
low false alarm. We compare HQCD with surrogates against HQCD without surrogates
(Table 2) and find that admitting surrogates significantly improves average delay (2.5
compared to 4.2). We also plot the average false alarm rate against the detection delay
in Figure 7 and find that HQCD results are in general the ones with the best tradeoff
between FA and ADD.

4.2 Analysis of Protest Uprisings

In real-life scenarios, the true changepoint is typically unknown. One representative ex-
ample could be seen w.r.t. the onset of major civil unrest related protests and uprisings.
We present a detailed analysis of three major uprisings: (i) in Brazil around mid 2013
(often termed as the Brazilian Spring), (ii) in Venezuela around early 2014 and, (iii) in
Uruguay around late 2013. We first describe the data collection procedure (Figure 8)
and followup with a comparative analysis of detected changepoints.

Weekly counts of civil unrest events from Nov. 2012 to Dec. 2014 were obtained as
part of a database of discrete unrest events (Gold Standard Report - GSR) prepared by
human analysts by parsing news articles for civil unrest content. Among other annota-
tions, the GSR also classifies each event to one of 6 possible event types based on the
reason (‘why’) behind the protest. Each of these event types such as a) Employment and
Wages, b) Housing, c) Energy and Resources, d) Other government, e) Other economic
and f) Other, bears certain societal importance. We treat the weekly counts of each of
these event-types as target sources (S) and the sum total of all protests for a week as the
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ID COUNTRY STATE CITY POPULATION EVENT CODE DATE
103 Brazil Brası́lia Brası́lia General Population 131 2013-02-08
119 Brazil Pará - Ethnic 152 2013-02-09
244 Brazil Brası́lia Brası́lia Education 151 2013-03-24

(a) Civil Unrest Protests

Pourquoi la brésilienne @CarlaDauden n'ira pas à la Coupe du monde? 
https://www.youtube.com/watch?v=Vbhua3Ejqa8 … #ChangeBrazil #FIFA

Congresso acaba de ser invadido ! #vemprarua https://t.co/vHWdNCUmsr

Don't focus on the rioting @guardian show the AWAKENING of BRazilians instead: 
https://t.co/T7txUYjTya @AnonOpsSE @PlanoAnonBR #mudabrasil

(b) Twitter chatter

Figure 8: Illustration of civil unrest data: (a) shows an example where relevant news articles (top) are
scanned to produce an annotated dataset of protest activities. (b) Geo-fenced Twitter data(top). Twitter
chatter can uncover various socio-political factors, some of which could be civil unrest events(bottom).
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Figure 9: Comparison of detected changepoints at the sum-of-targets (all Protests). HQCD detections are
shown in solid green while those from the state-of-the-art methods i.e. RuLSIF (red), WGLRT (magenta),
BOCPD (purple) and GLRT (gold) are shown with dashed lines. HQCD detection is the closest to the
traditional start date of Mass Protests in the three countries studied .

sum-of-targets (E). We also collected geo-fenced tweets for each country over the same
time-period. We used a human-annotated dictionary of 962 such keywords/phrases that
contains several identifiers of protest in the languages spoken in the countries of interest
(similar to Ramakrishnan et.al. (Ramakrishnan et al, 2014)). As most of these keywords
could have similar trends, we cluster them using k-means into 30 clusters (i.e., we have
J = 30 surrogates). To account for scaling effects while preserving temporal coherence,
each keyword time-series was normalized to zero-mean and unit variance.
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Table 3: (Protest uprisings) Comparison of HQCD vs state-of-the-art with respect to detected change-
points

Event-Type GLRT WGLRT BOCPD RuLSIF HQCD

γ γ γ γ γ EADD

Brazil Employment & Wages 02/10 03/17 06/16 05/26 08/18 4
Energy & Resources 02/10 03/17 06/09 05/19 06/02 6
Housing 03/24 03/31 07/28 05/19 06/16 8
Other Economic 03/24 03/24 06/23 05/19 06/30 5
Other Government 02/17 06/23 04/07 05/19 06/16 4
Other 03/03 03/17 06/30 05/19 06/23 6
All 02/17 04/28 05/19 06/16 06/16 8

Venezuela Employment & Wages 01/14 01/13 01/28 01/25 01/27 3
Energy & Resources 01/20 01/11 02/28 01/20 02/24 7
Housing - - - - - -
Other Economic 01/31 01/31 01/28 - 01/27 9
Other Government 01/22 01/11 02/03 01/20 02/10 4
Other 01/14 01/12 01/25 01/30 01/24 5
All 01/26 01/11 01/30 01/20 02/12 3

Uruguay Employment & Wages 12/06 12/08 12/13 12/03 12/10 3
Energy & Resources 12/04 12/05 12/10 - 12/09 4
Housing 12/21 12/06 11/30 - 11/28 2
Other Economic 12/20 12/06 - - 11/26 2
Other Government 11/25 12/05 12/16 11/29 12/15 3
Other 12/05 12/09 12/03 - 01/14 10
All 12/05 12/09 12/03 11/29 12/10 3
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Figure 10: Comparison of detected changepoints at the target sources (Protest types) HQCD detections
are shown in solid green while those from the state-of-the-art methods i.e. RuLSIF (red), WGLRT (ma-
genta), BOCPD (purple) and GLRT (gold) are shown with dashed lines.

4.2.1 Changepoint Across layers

We show the changepoints detected by HQCD (bold green) and the state-of-the-art
methods (dashed lines) for the sum-of-all protests in Figure 9 and individual protest
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types in Figure 10. We can observe that HQCD, which uses the surrogate informa-
tion sources and exploits the hierarchical structure, finds indicators of changes which
are visually better as well as more aligned to the dates of major events (See demo at
https://prithwi.github.io/hqcd_supplementary). In contrast, the state-of-the-art
methods can be argued to show significantly high false alarm rate. For such real world
data sources, the notion of a true changepoint is difficult to ascertain, we can instead
consider for example the onset of Brazilian spring protests (2013-06-01) as an underly-
ing changepoint to compare at the sum-of-targets and interpret notions of false alarm.
Table 3 tabulates these inferences for the targets as well as the sum-of-targets. Al-
though, a true changepoint is unknown, we note that for HQCD, the expected additive
detection delay (EADD) can be estimated according to equation 2 (from P (Γ̄|D(T )) in
Algorithm 2).

4.2.2 Changepoint influence analysis

The experiments presented in the previous section can be further analyzed to ascertain
the nature of progression of significant events that lead to a protest. Here we present our
analysis for Brazilian Spring. As a preliminary step, from Table 3 we can see that the
detected changepoints for Brazil reveal an interesting progression - significant changes in
Energy related unrests (06/02) propagated to Housing/Other Govt. unrests (06/16) and
culminated in mass Employment related unrests (08/18). Interestingly, we can analyze
the fitted parameters of the weight vector Ai0/1 of the rate updates (see 13) to quantize

the changepoint influence of a source (target/surrogate) at time T − 1 to time T . For
each target Si, we can compute the average value of the weight vector component of each
target/surrogate separately. Let h0 and h1 denote these averages for one such source.
Effectively, h0 then measures the effect of the source at time t − 1 on Si at t before
change while h1 captures the same post change. Their percentage relative change can
then be used as a measure of the changepoint influence of a particular target/surrogate
source on Si. We plot a heatmap of these percentages in Figure 11 for both targets
and surrogates, separately. From Figure 11a, we can see that ‘Other Economic’ and
’Employment’ related protests had strong influences from ‘Housing’ related protests.
Furthermore, from Figure 11b we can see ‘Housing’ and ‘Employment’ related protests
were influenced by similar Twitter chatter clusters (cluster-01 and cluster-26) - indicating
that the interaction between these protest subtypes can be inferred from social domain.
Conversely, ‘Housing’ and ‘Other Economic’ related protests are only weakly correlated
through Twitter chatters - thus exhibiting the robustness of HQCD which can still detect
interactions between targets when surrogates fail to explain the same. In general, for
a particular target we can see linked pre-cursors in other targets (strong off-diagonal
elements in Figure 11a) and highly specific informative surrogates (few strong cells for
a row in Figure 11b).
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(a) Influence of lagged targets on current targets
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Figure 11: (Brazilian Spring) Heatmap of changepoint influences of targets on targets (a); and surrogates
on targets (b). Darker (lighter) shades indicate higher (lesser) changepoint influence. (a) shows presence
of strong off-diagonal elements indicating strong cross-target changepoint information. (b) shows a
mixture of uninformative and informative surrogates.
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5 Conclusion

We have presented HQCD, a framework for online change detection in multiple data
sources which can augment additional surrogate information sources in a hierarchical
manner. Key properties of our framework are the following a) it is computationally
inexpensive requiring a search over local change points (for each data layer) making it
applicable for a large number of data/surrogate sources, b) the change detection algo-
rithms are readily tunable to account for different false alarm requirements at different
data layers, and c) it provides a systematic approach to integrate surrogate information
for the same. As shown through a variety of experiments on both synthetic and real world
data sets, the proposed approach uncovers interesting relationships and significantly out-
performs state-of-the-art methods which do not account for surrogate information both
in terms of event detection reliability (probability of false alarm) as well as the delay in
detection.

Supporting Information A demo of HQCD and the datasets used in this paper can
be found in https://prithwi.github.io/hqcd_supplementary. Attached appendix
provides additional details on SMC2.
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A Sequential Bayesian Inference

Consider a stochastic process where an observed temporal data sequence ȳ = {y1, y2, . . . , yt}
depends on unobserved latent states x̄ = {x1, x2, . . . , xt} such that the following formu-
lation holds:

P (yt|y1:t−1, x1:t, θ) = fθ(yt|xt)
P (xt|x1:t−1, θ) = gθ(xt|xt−1)

P (x1|θ) = µθ(x1)
Π0(θ) = P (θ)

(20)

i.e. yt depends only on the current estimate of the state xt. On the other hand, xt
depends only on xt−1, thus exhibiting a first-order Markov property. θ denotes the set
of parameter for the described process which are constant over time. For some θ, fθ,
gθ describe the observation probability and the state transition probability, respectively.
P (θ) is the prior distribution for the static parameter θ while µθ is the same for x given
a particular θ. Typically, at any time point t− 1 the observation values are known but
the latent states and the parameter θ are unknown. The problem of interest is then to
estimate the posterior probability

Pθ({x1, x2, . . . , xt−1}|{y1, y2, . . . , yt−1})

This problem has been studied extensively in the context of Sequential Bayesian In-
ference (Casella and Berger, 2002). Kalman filters (Kalman, 1960), a class of such
algorithms, are very popular when fθ and gθ describe linear Gaussian transitions. There
have been efforts (Anderson, 2001; Simon, 2010) at relaxing these restrictions using
methods such as Taylor series expansion and ensemble averages. However, for arbitrary
forms of fθ and gθ, Sequential Monte Carlo and more specifically Particle Filters are
more popular. Particle Filters (Del Moral, 1996) estimate the posteriors using a large
number of Monte Carlo samples from the observation and state transition models. At
any time t, these algorithms only need to draw new samples for time t using data from
only t− 1. Thus these methods are ideally suited for online learning. Standard Particle
Filters are known to suffer from premature convergence (particle degeneracy) (Doucet
and Johansen, 2009) or unsuitable for unknown static variables (Doucet and Johansen,
2009; Pitt and Shephard, 1999) Recently, Chopin et al. (Chopin et al, 2013) proposed
a hybrid Particle filter which interleaves Iterated batch resampling with particle filter
updates to handle both static and state parameters. Given an observed sequence y1:t,
SMC2 can be used to find the best posterior fit of the static and state parameters as
given below:

P
(
φ, {x1:t}φ | y1:t

)
A.1 SMC2 algorithm traces

We present the traces of the SMC2 algorithm below. For a more detailed treatment
of the same (including theoretical proofs of convergence) we ask the readers to refer
to (Chopin et al, 2013).
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SMC2 typically starts with two parameters: (a) Nθ - the number of static parameters
sampled from the prior of θ and (b) Nx - the number of particles of initialized for each
θ.

Then the Algorithm can be given as follows:

1. Sample Nθ number of θm ∼ P (θ)

2. ∀θm run the following particle filter

(a) Initialization: t = 1

i. x1:Nx,m
1 ∼ µθm

ii. w1,θ(x
n
1 ,m) =

µ1,θm (xn,m1 )gθ(y1|xn,m1

q1,θ(x
n,m)
1

iii. Wn,m
1,θ =

w1,θ(x1n,m)∑
i w1,θ(x1i,m)

iv. P (y|θm) = 1
Nx

Nx∑
n=1

w1,θ(x
n,m
1 )

(b) t ≥ 1

i. Auxiliary variable:

an,mt−1 ∼Multinomial
(
W 1:Nx,m
t−1,θ

)
ii. State Proposal:

xtn,m ∼ qt,θ
(
.|xa

n,m
t−1

t−1

)
iii. Weight Update:

Wt,θ

(
x
an,mt−1

t−1

)
∼

wt,θ

(
x
a
n,m
t−1
t−1 xn,mt

)
∑
x
a
n,m
t−1
t−1 xn,mt

iv. Observation probability:

P (yt|y1:t−1, θ
m) =

Nx∑
n=1

wt,θ

(
x
a
n,m
t−1
t−1 xn,mt

)
Nx

3. Update Importance weights:
∀θm wm ← wmP (yt|y1:t−1,θm

4. Under degeneracy criterion:
Move particles using Kernel(

θ̃m,
˜

x1:Nx,m
1:t ,

˜
a1:Nx,m

1:t−1

)
i.i.d∼∑m

w Kt(θm,x
1:Nx,m
1:t ,a1:Nx,m1:t−1 )∑
m wm

5. Weight Exchange:(
θm, x1:Nx,m

1:t , a1:Nx,m
1:t−1

)
←
(
θ̃m,

˜
x1:Nx,m

1:t ,
˜

a1:Nx,m
1:t−1

)
Here, K is a Markov kernel Targeting the posterior distribution. It can be shown that

such Markov moves don’t change the target distribution and can alleviate the problem
of particle degeneracy.
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A.2 SMC2 priors

We used conjugate distributions to model the priors. For, P (θ) we used a mixture of
Latin hypercube sampling (LHS) and conjugate priors as follows:

σS , ρ̄S, µ̄1, µ̄2 ∼ LHS
ΣA ∼ InverseWishart,

(21)

Similar to P (θ), we model the initial distribution P (x0|θ) via LHS sampling for the
base values and by using the model equations as presented in Section 3.1. as follows:

c̄K ∼ Normal

φ̄k, ρ̄s, ∼ Gamma
(22)

The parameters of the distributions of P (θ) and P (x0|θ) are called hyperparameters in
the general domain of Bayesian Inference and following standard practices are found via
cross-validation.
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