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ABSTRACT
Developing a precise understanding of the dynamic behavior of time
series is crucial for the success of forecasting techniques. We in-
troduce a novel communication-theoretic framework for modeling
and forecasting time series. In particular, the observed time series
is modeled as the output of a noisy communication system with the
input as the future values of time series. We use a data-driven prob-
abilistic approach to estimate the unknown parameters of the system
which in turn is used for forecasting. We also develop an extension
of the proposed framework together with a filtering algorithm to ac-
count for the noise and heterogeneity in the quality of time series.
Experimental results demonstrate the effectiveness of this approach.

1. INTRODUCTION
With recent advances in data analytics and machine learning,
scientists and policy makers are now able to use time-series
analysis in important applications such as epidemiological [1]
and financial forecasting [2]. Classical time-series methods
such as the autoregressive model (AR), ARMA, and ARIMA
are widely popular [3]. When the modeled process is highly
nonlinear, methods such as Gaussian and Dirichlet processes
are more popular [4].

In traditional time series analysis, it is assumed that the
behavior of time series in the future will follow the same dy-
namics as in the past [5]. However, in real-world time series
noise and the unfolding dynamic behavior of data can have a
significant effect on the accuracy of predictions.

In this paper, we propose a framework based on the simi-
larities of time series regression and communication systems,
to address the aforementioned issues by making explicit as-
sumptions about the noise and behavior of time series. We
will show that noise and deviations from the predetermined
behavior of time series is similar to the noise of a communica-
tion channel and thus, use communication-theoretic methods
to address this deviation to some level. We model the noisy
communication channel between the future and past values
of time series as an additive Gaussian noise channel. Channel
parameters are estimated from the observed data together with
an out-of-band filtering algorithm to boost the signal-to-noise
(SNR) ratio. The estimates of this noisy channel process are
subsequently used for forecasting the future time series data
via regression. We perform extensive experiments with real-
world and synthetic datasets to study the performance of the
proposed approach. Results show that the proposed model
can efficiently improve the forecasting performance in terms

of accuracy. Thus, our contributions are:
• Developing a framework to directly address the noise,

instabilities, and deviations of time series behavior
from its known behavior using communication theory
concepts.
• Improving the accuracy of regression through a fre-

quency domain out-of-band noise filtering.
• Developing analytic models to estimate the amount of

noise in a specific time series.

2. PROBLEM FORMULATION
Let us assume that we have a time series y1, y2, · · ·, which in
the rest of the paper, we denote by Y . We denote the sequence
of samples between time points t1 and t2 by Yt2

t1 , i.e. Yt2
t1 =

[yt1 · · · yt2 ]T . If we have observed Yt−k
1 and we desire to

forecast the value of Y at time t, yt, we have:

ŷt = ϕ
(
Yt−k

1

)
(1)

where ϕ(·) is the estimation function and ŷt is the estimated
value of yt. As an example, in the classic AR(m) approach,
yt is forecasted based on the following equation:

ŷt = β +

m−1∑
j=0

αjyt−k−j = β + ATYt−k
t−k−(m−1) (2)

where m is the order of autoregressive model, αj’s and β are
the regression weights, and A = [αm−1 · · ·α0]

T .
In many practical applications, due to inaccuracies in

data acquisition, forecasts should be made using unstable and
noisy time series. Most of the times, this is more serious
for the newer values since older samples may be corrected
and stabilized over time. This non-uniform imperfection of
the data causes heterogeneity in the quality of time series.
Regression is highly sensitive to outliers [6] and hence, this
noise is considered as a source of estimation error. To model
heterogeneity, we use ẏj to denote a stable sample at time j
and Ẏt2

t1 to denote all the stable samples between t1 and t2.
Each sample of time series Y can be modeled as follows:

yj = ẏj + νj (3)

where ẏj is the stable part of the sample and νj is a Gaus-
sian random variable with zero mean and variance ς2j , νj ∼
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Fig. 1. (a) General model of a communication channel, (b)
Multiple-output virtual channel model.

N (0, ς2j ). Since newer values suffer from more instability, we
can assume that if i < j then ς2i ≤ ς2j . Note that stable data
samples are modeled as in Eq. 3 with ςj = 0.

Similar to time series analysis, communication systems
suffer from imperfect noisy channels and hence, the received
message may be different from the sent one. The general
model of a communication system is illustrated in Fig. 1(a).
In this model, a transmitter sends a signal containing some in-
formation which is unknown to the receiver. On the other side
of the channel, a receiver receives a signal and is aimed to de-
termine the transmitted information. One of the most studied
channel models in communication theory is the additive white
Gaussian noise (AWGN) channel which is illustrated in Fig.
1(a). In this model, the transmitted signal x(t) is corrupted
by an additive noise, n(t), which is white and comes from a
Gaussian random process with zero mean, n ∼ N(0, σ2

0). In
Fig. 1(a), H is the impulse response of the channel and in its
simplest form can be modeled as an attenuation. Generally,
the transmitter and receiver are situated in different locations
and transmission occurs before the reception.

Let us assume that a transmitter is located in a future time,
tF , and is sending us a message, MtF . We, as the receivers
of the message, are located at the current time, tC < tF , and
receive a corrupted and noisy signal, StC . Then, the problem
of communication is to estimate the message through the re-
ceived signal as M̂tF = g(StC ), where M̂tF is the estimated
message and g(·) is the estimation function. Here, since MtF

is generated in the future and StC is received at the present
time, estimating the unknown message is a prediction prob-
lem. By mapping the tF to t, tC to t− k, MtF to yt, and StC
to Yt−k

1 , we can observe that the above communication sys-
tem is a regression problem, defined in Eq. 1. More precisely,
we can assume that a transmitter is located at time t and sends
us an unknown message yt that we received it in the form of
Yt−k

1 . Then, the regression problem is to estimate the trans-
mitted message, yt, based on the received signal. We define
the noisy channel forecasting model as follows:

Definition 1 Noisy Channel Forecasting (NCF) Model is a
representation of a time series forecasting problem as a noisy
communication system that assumes that the future values of
the time series are unknown messages that have been sent
back in time through a noisy channel reversal and received in
the form of our observations.

The NCF model aids in a better understanding of the un-
derling dynamic behavior of time series by leveraging tools
and techniques from the communication domain. It is rem-
iniscent of the work of Chen et al. [7] which addresses the
application of communication theory and information theory
through the use of equalizers to optimize information trans-
fer and analyze causal relationships. These authors also pro-
posed an information coupling approach for dimensionality
reduction.

The NCF model can be used as a wrapper for any time
series analysis approach. While various channel models can
be used in NCF, in this paper we use NCF with additive noise
channels, defined as follows.

Definition 2 NCF model with additive Gaussian noise
(AGN) is an NCF that models the channel as an additive
Gaussian noise as Yt−k

1 = h(yt)+N, where h(·) is a vector
function, and N is a multivariate Gaussian noise.

Let us assume that we use the general forecasting function
of Eq. 1 and the NCF model with AGN. Then, we have the
following two equations that relates observed data with future
values: {

ŷt = ϕ(Yt−k
1 )

Yt−k
1 = h(yt) + N

(4)

Using the training dataset, optimum model parameters includ-
ing noise, channel, and estimation function coefficients, can
be estimated through an optimization problem that minimizes
some sort of risk function. For instance, with an MSE risk
function, the following optimization problem can be solved
to find the system parameters:

min (yt − ŷt)2 = min (yt − ϕ (h(yt) + N))
2
. (5)

In this paper, we model linear regression problems using NCF
models with AGN in order to tackle with noisy time series
and reduce the effect of noise in the forecasting process to
improve the accuracy of predictions. The provided framework
can be easily extended to nonlinear regression algorithms.

3. NOISY CHANNEL REVERSAL REGRESSION
In this section, we first model an autoregression problem us-
ing NCF with AGN. Then, we estimate noise and channel
statistics simultaneously. Results of this estimation can be
used to estimate the amount of noise in a specific time series.

3.1. Modeling time series as a Noisy Channel
Based on Definitions 1 and 2, in this section we model the
AR(m) of Eq. 2 using NCF. In the general case, as depicted in
Fig. 1(b), the system is modeled as a multiple-output virtual
communication channel. Hence, based on Definition 2, we
can formulate this channel as follows:

Yt−k
t−k−(m−1) = ytS + N (6)



where S = [sm−1 · · · s0]
T , sj ≥ 0, represents the channel

effect (attenuation) and N = [nm−1 · · ·n0]
T . Similar to Eq.

5 and using Eq. 2, the coefficients αi’s and β, can be obtained
by solving the following optimization problem:

A∗, β∗ = argmin
A,β

E
[
(yt − ŷt)2

]
(7)

= argmin
A,β

E
[(
β + ATN + yt

(
ATS− 1

))2]
By the simplifying assumption that Y is a set of i.i.d. ran-

dom variables, we can show that Eq. 7 depends on the mean,
µY , and variance, σ2

Y , of the time series Y . In other words,

A∗, β∗ = argmin
A,β

(
β + ATN

)2
+ (8)(

ATS− 1
)2 (

σ2
Y + µ2

Y

)
+ 2

(
β + ATN

) (
ATS− 1

)
µY

In the special case when data is available uptil yt−1 and
we model AR(1) with NCF, the optimum weights are as fol-
lows:

α∗0 =
s0σ

2

s2
0σ

2 + σ2
0

; β∗ =
µσ2

0 − s0µ0σ
2

s2
0σ

2 + σ2
0

(9)

where s0 ≥ 0 is channel attenuation and n0 is an additive
Gaussian noise, n0 ∼ N(µ0, σ

2
0). Furthermore, µ and σ2 are

the expectation and variance of the time series, respectively.
The following lemma provides a lower band for noise and
signal parameters in the case of AR(1) with NCF model.

Lemma 1 Considering the noise in the NCF model of AR(1)
improves the accuracy if R2

1−R2 <
s20σ

2

σ2
0

, where R ∈ [−1,+1]

is the Pearson’s product-moment coefficient of the time series.

Proof It can be shown that the expected Mean-Square er-
ror of the standard AR(1) is eMSE = σ2(1 − R2). Also,
for NCF-based AR(1), error can be estimated using eNCFMSE =
σ2σ2

0

s20σ
2+σ2

0
. We can show that eNCFMSE < eMSE holds, if we have

σ2
0 < s2

0σ
2 1−R2

R2 and with minor manipulations, this leads to
R2

1−R2 <
s20σ

2

σ2
0

thus proving the lemma.

Based on Lemma 1, when R = 0, there is no linear re-
lationship between yt and yt−1 and for any value of s0, σ2,
and σ2

0 , the proposed method works better than the classic ap-
proach. Also, with perfect linear relationship between yt and
yt−1, R2 = 1, it is not possible to achieve lower error using
the proposed method. Note that for random signals and noises
with zero mean, s

2
0σ

2

σ2
0

represents the SNR at the output of the
channel. This shows the importance of SNR in time series
analysis.

In order to address instability, based on Eq. 3, we can
reformulate Eq. 6 as follows:

Yt−k
t−k−(m−1) = Ẏt−k

t−k−(m−1) + νt−kt−k−(m−1) (10)

= ẏtS + N + νt−kt−k−(m−1)

where νt−kt−k−(m−1) = [νt−k−(m−1) · · · νt−k]T . Hence, we
have two noise components and by independence assump-
tion and assuming that νj is wide sense stationary, these noise
components can be aggregated into a single noise factor, ṅj ,
which is also Gaussian. Then, Eq. 7 can be used to determine
the regression coefficients if we substitute nj’s with ṅj’s.

3.2. Simultaneous Estimation of Noise and Channel
Before calculating αi’s and β, we have to first estimate the
channel properties, S and N. There are various channel esti-
mation methods in the literature [8]. In this paper, we develop
an integrated maximum likelihood method to simultaneously
estimate the noise and channel characteristics.

Let us assume that we have already observed the time se-
ries Y till time t−k and anm-output noisy channel (Fig. 1(b))
is used in the NCF model. Then, using the maximum likeli-
hood approach, we want to choose our parameters to maxi-
mize the probability of observation. In other words,

S∗,M∗,Σ∗ = arg max
S,M,Σ

Pr
[
Yt−k
m+k |S,M,Σ

]
(11)

where S = [sm−1 · · · s0]
T represents channel attenuation,

M = [µm−1 · · ·µ0]
T is a vector that contains noise expec-

tations, and Σ is the m×m covariance matrix of noise. Note
that based on the proposed model, in order to learn the sys-
tem parameters, we need to relate each observed data sample,
yj to the m samples Yj−k

j−k−(m−1). Therefore, in Eq. 11, the
index of y begins from m + k. Assuming that yj’s are i.i.d.
and this assumption that noise has an m-dimensional Gaus-
sian distribution, N ∼ N (M,Σ), one can easily observe that
Eq. 11 is equivalent to maximization of the following equa-
tion:

L =

t−k∏
j=m+k

e
− 1

2 (Yj−k
j−k−(m−1)

−Mj)
TΣ−1(Yj−k

j−k−(m−1)
−Mj)√

(2π)m|Σ|

where Mj = yjS + M. Using the log-likelihood, maximiza-
tion of L is equivalent to the following optimization problem:

S∗,M∗,Σ∗ = arg min
S,M,Σ

(t−m− 2k + 1) ln (|Σ|)+ (12)

t−k∑
j=m+k

(Yj−k
j−k−(m−1) −Mj)

TΣ−1(Yj−k
j−k−(m−1) −Mj)

For the single receiver case (m = 1) and when data is
available uptil yt−1 one can show that these parameters can
be determined using the following set of equations:

σ2
0 = 1

t−2

∑t−2
j=1 (yj − s0yj+1 − µ0)

2

s0

∑t−2
j=1 y

2
j+1 + µ0

∑t−2
j=1 yj+1 =

∑t−2
j=1 yj+1yj

s0

∑t−2
j=1 yj+1 + (t− 2)µ0 =

∑t−2
j=1 yj

(13)

4. FORECASTING WITH NOISE FILTERING
Usually, real-world time series and their accompanying noise
have different representations in the frequency domain. The
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Fig. 2. (a) Example of a signal and noise in frequency domain.
(b) Effect of filtering on signal and noise.

difference between the noise and signal power distribution in
the frequency domain is the key intuition behind using out-of-
band noise filtering in order to improve the SNR and increase
the prediction accuracy. An illustrative example is shown in
Fig. 2. In this figure, noise is uniformly distributed over the
channel bandwidth while signal power is concentrated around
zero. As it is shown in Fig. 2(b), by using a low-pass filter
with a sufficient bandwidth, a significant power of noise is
reduced while the effective part of signal remains unchanged.

The first step in filter design is recognition of important
and non-important frequency components of the signal. For
this purpose, we use FFT to find the representation of the sig-
nal in frequency domain. We define the γ-effective bandwidth
of a time series as follows:

Definition 3 γ-effective bandwidth: For an arbitrary time
series yt and γ ∈ [0, 1], the γ-effective bandwidth is the set of
frequency-domain components, symmetrically located around
the peak frequency, that carry γPy of the time series power,
where Py is the total power of time series. Size of the γ-
effective bandwidth of y(t) is shown by Bγy .

After representing the time series in frequency domain,
we aim to find the γ-effective bandwidth of the signal. There-
fore, we need to identify those frequency components that
carry the most part of the signal power and to choose an ap-
propriate value for γ. Using a very small value for γ results in
an unacceptable distortion in the signal while using larger val-
ues results in higher amount of noise. This step can be carried
out using cross-validation. Those frequency components that
carry γ portion of Py are in the γ-effective bandwidth of the
signal and the remaining ones are considered as out-of-band
components. Out-of-band frequency components are forced
to zero and then, the filtered version of Y , Y f , is determined
using an inverse-FFT transformation.

While filtering improves the accuracy of regression for
noisy time series, it can be harmful for noiseless ones. In fact,
the total energy of a noiseless time series is the signal energy
and filtering any number of the frequency components results
in unnecessary signal distortions which may reduce the accu-
racy of the regression.

Lemma 2 When noise power is uniformly distributed in fre-
quency domain, out-of-band noise filtering with γ-effective
bandwidth filter improves time series SNR if γ > Bγy /B

1
y .

Proof Let us assume that the total power of the time series is
PS,N = PS+PN , where PS is the signal power and PN is the

Observed 

time series
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Fig. 3. Overall proposed framework.

power of noise. Obviously, SNR of the original time series is
SNROriginal = PS/PN . Similar to Fig. 2, the noise power
is uniformly distributed over all frequency components. The
total bandwidth of the signal contains B1

y components in the
frequency domain while the filtered time series contains Bγy
components. Then, after filtering, we will have:

PFilteredN =
Bγy
B1
y

PN , PFilteredS = γPS,N −
Bγy
B1
y

PN

SNRFiltered =
γ(PS + PN )− Bγy

B1
y
PN

Bγy
B1
y
PN

.

If we aim to improve the SNR we should have SNRFiltered >
SNROriginal. This means that we should have γ > Bγy /B

1
y .

4.1. Forecasting Framework
The overall view of the proposed framework is illustrated in
Fig. 3. This framework has three major building blocks:
• Parameter estimation: where various parameters including

regression coefficients and time series noise are estimated.
• Out-of-band noise filtering: where a filter is used to remove

the out-of-band noise of the time series.
• Regression and forecasting: where using the filtered time

series forecasting is performed.
Note that filtering should be performed if time series is noisy.
Otherwise, the procedure is likely to result in lower accuracy.
The main goal of the parameter estimation step is to estimate
the amount of noise in the time series in terms of noise statis-
tics and SNR to be used in the filtering block. After out-of-
band noise filtering, one can use the filtered time series for
forecasting.

5. CASE STUDY: SYNTHETIC DATASET
In order to study the behavior of regression algorithms under
out-of-band noise filtering and to determine the accuracy of
the estimations performed in previous sections, we performed
various experiments on synthetic time series. In this section
we provide results and discuss the observations.

To construct the synthetic dataset, we first generate a time
series based on x(t) = 3t + 2, where t changes between 0
and 100 in steps of 0.1. Then, we construct various time se-
ries with added Gaussian noise with zero mean and different
variances. For this purpose, we set y1 = x and

yj = x+ nj , nj ∼ N (0, σ2
j ) , σj = 2j−2 , j = 2, · · · , 9
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Fig. 4. Results of synthetic data: (a) selected values for γ, (b)
estimated and actual values of σj , (c) effect of filtering on σj ,
(d) SNR of time series in dB, (e) RMS error w.r.t noisy data,
(f) RMS error w.r.t noiseless data, (g) comparison of γ with
nγ
nF

and (h) original and filtered time series with σj = 16.

From each of these time series, we generated 100 instances
and for each instance, we first estimate the properties of the
noise based on Eq. 13. Then, we use AR(1) with and with-
out out-of-band noise filtering. For AR(1) with filtering, we
first performed cross validation to choose the best value of γ.
In addition to the regression accuracy, we also measured the
signal and noise properties, before and after filtering.

Results of the synthetic time series are shown in Fig. 4.
Figure 4(a) shows the best selected values for γ for each of
the time series. As we expected, for smaller value of σj (when
noise power is low), γ = 1 is the best. When noise power is
low, filtering results in unnecessary signal distortions and this
may be harmful for regression accuracy. However, while σj
increases, the best value of γ decreases. Fig. 4(b) compares
the original values of σj (the ones used in data generation)
with the estimated ones, calculated based on Eq. 13. Results
show that the estimated values are close to real ones. Fig. 4(c)
shows σj of the time series before and after filtering. As we
expected, filtering reduces the noise effect dramatically. The
effect of filtering on SNR is illustrated in Fig. 4(d). Again,

Table 1. Effect of filtering on regression algorithms and time
series. Green color shows the improvement in accuracy.

Time series AR(1) AR(Opt) R-AR(1) R-AR(Opt) R-ARMA(1,1) R-ARMA(Opt)

PAHO - Argentina 1.50 4.86 0.00 0.00 5.60 1.22
PAHO - Chile 0.00 2.37 9.19 0.00 15.56 0.25
PAHO - Colombia 0.00 3.83 1.04 5.18 5.21 0.00
PAHO - Costa Rica 8.88 12.00 4.15 4.36 5.76 0.35
PAHO - Ecuador 44.50 37.42 8.83 9.86 12.99 6.03
PAHO - El Salvador 2.35 3.46 8.43 1.89 7.32 2.12
PAHO - Guatemala 5.07 5.07 7.12 1.05 3.36 0.00
PAHO - Honduras 11.22 11.22 11.81 6.20 6.02 0.00
PAHO - Mexico 18.41 21.57 0.00 0.00 0.00 0.00
PAHO - Nicaragua 10.75 10.75 8.03 0.00 2.67 0.00
PAHO - Panama 1.36 1.36 1.10 0.82 7.24 0.27
PAHO - Paraguay 15.88 13.92 0.00 0.00 0.00 0.00
GST - Melanoma 4.17 0.00 8.00 6.00 2.08 2.08
GST - Volleyball 16.67 16.67 3.33 3.33 13.33 0.00
GST - Wrestling 37.04 26.09 5.26 5.26 19.05 10.53
GST - Swimming 9.30 22.50 0.00 0.00 0.00 0.00
GST - Yahoo 35.14 12.50 0.00 0.00 4.55 4.55
GST - Microsoft 66.67 100.00 0.00 0.00 0.00 0.00
GST - Facebook 14.29 15.00 10.53 5.56 5.56 0.00
GST - Youtube 14.29 10.00 10.00 5.26 5.26 0.00
GST - Hotmail 15.79 13.89 3.23 0.00 0.00 0.00
GST - Ebay 18.00 8.89 2.38 2.38 2.38 2.38
GST - Dollar 15.09 6.25 2.17 2.17 8.16 0.00
GST - Yen 26.67 24.14 11.54 4.17 26.67 0.00
GST - Pound 18.60 10.53 0.00 0.00 10.26 15.79
GST - Earthquake 21.19 11.19 4.96 0.00 6.45 0.00
GST - Hurricane 35.17 35.17 36.23 7.78 23.58 0.00
GST - Tsunami 21.92 21.92 18.46 3.51 24.66 0.00
GST - Storm 1.49 1.49 17.65 0.00 0.00 0.00
STOCK - Yahoo 5.13 5.13 5.13 5.13 7.69 7.69
STOCK - Ford 12.50 12.50 12.50 12.50 12.50 12.50
STOCK - GE 14.29 14.29 14.29 14.29 14.29 14.29
STOCK - AEP 11.11 5.88 11.11 5.88 11.11 5.88
NIST StRD - ENSO 3.21 3.31 0.00 0.00 0.00 1.62
NIST StRD - Gauss1 13.03 0.00 15.30 0.00 5.41 0.00
NIST StRD - Gauss2 22.41 10.94 25.87 12.50 10.83 5.96
NIST StRD - Gauss3 21.80 7.91 23.78 9.31 6.36 2.18
UCI - Bike Sharing (Daily) 0.57 0.00 4.40 0.00 1.70 0.00
UCI - CalIT2 In (Daily sum) 2.01 0.00 1.99 0.00 4.84 0.00
UCI - Dodgers (Daily Avg) 0.00 0.00 3.60 0.00 7.64 0.00

results show that filtering improves the SNR dramatically.
Regression accuracy, before and after filtering, are com-

pared in Fig. 4(e) and (f). In these figures, RMS error is used
as a measure of accuracy. Fig. 4(e) shows the regression error
when we compare the estimated value with the actual value
of the noisy signal, RMSEnoisy . For each of these time se-
ries, we used the last 100 samples for test. Generally, when
we aim to test the accuracy of a regression algorithm, we
use RMSEnoisy . However, when the observed time series
is noisy and we are using it to predict a noiseless value (such
as prediction of the number of people that will have Influenza
based on an observed noisy data), we need to compare our
predictions with the noiseless time series. We show this error
by RMSEnoiseless and results are illustrated in Fig. 4(f).

Figure 4(g) compares the value of γ and the ratio Bγ

B1 . In
Lemma 2, we showed that for an effective filtering, γ should
be greater than Bγ

B1 . Results of Fig. 4(g) shows that this con-
dition is always true. To illustrate how the amount of noise
in the time series is reduced by filtering, Fig. 4(h) shows an
example. This figure compares the original and filtered syn-
thetic time series with σ6 = 16. It is obvious that filtering has
reduced the amplitude of noise in the time series dramatically
which results in the improvements in regression accuracy.

6. EXPERIMENTAL RESULTS
In this section, to have a better understanding of the perfor-
mance of the proposed framework, we perform experiments
with 40 time series from the following datasets:
• UCI: Real-world time series from UCI Repository.
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Fig. 5. The effect of filtering on two time series (γ = 0.9).
The top row shows time series in frequency domain. The mid-
dle row shows the time series in time domain. The bottom row
shows the estimated effective noise.

• NIST: Time series from the NIST StRD website1 .
• STOCK: Closing stock price of different companies from

Yahoo Finance.
• GST: Weekly Google Search Trends from different topics.
• PAHO: Influenza Like Illnesses statistics of various coun-

tries from the Pan American Health Organization website2.
In addition to AR(m), we also perform experiments with

recursive-AR(m) (R-AR) and recursive-ARMA(m,q) (R-
ARMA). We report results for basic (i.e. m = q = 1) and
optimal settings for each algorithm, where optimal settings
were determined through cross validation. We also performed
experiments with and without filtering. We measured the ac-
curacy using the following relative error (RE):

eRE =
1

|T |
∑
t∈T

|ŷt − yt|
max(yt, ŷ)

where T is the test set (in this experiment, last 15% samples).
Table 1 shows the effect of filtering on various algorithms

and time series. Numbers depict the achieved improvements
in accuracy due to filtering and the green color shows cases
where filtering has improved the accuracy. It is obvious from
the table that in most of the cases filtering has improved the
accuracy of regression. Results also show that on average,
AR(1) shows the highest improvement. This is due to the
nature of AR(1), as other methods are more complex and less
vulnerable to noise. The average error of algorithms before
and after filtering over 40 time series are compared in Fig. 6.

The effect of filtering with γ = 0.9 on two example time
series is illustrated in Fig. 5. The first row of the figure shows
the FFT of the time series before and after filtering. This fig-
ure also shows that how filtering affects on the quality of sig-
nal and amplitude of noise. It is obvious from this figure that
the noise amplitude has been reduced dramatically after filter-
ing. The results are consistent with Table 1.

7. CONCLUSION
In this paper, we proposed the NCF model to extend forecast-
ing methods and a new framework for time series regression,

1http://www.itl.nist.gov/div898/strd/nls/nls˙main.shtml
2http://ais.paho.org/phip/viz/ed˙flu.asp
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Fig. 6. Comparison between average error of different regres-
sion algorithms before and after filtering over 40 time series.

using a communication theoretic method. In this model, noise
plays the role of a hidden factor in the system and we showed
that under certain conditions, the proposed model performs
better than the classic methods. Experimental results showed
that the proposed solution results in higher accuracy than the
classic approaches. Future work includes extending the NCF
model to nonlinear regressions and expanding it to include
other communication-theoretic techniques such as equalizers.
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