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Abstract
Local and distributed power generation is increasingly
reliant on renewable power sources, e.g., solar (pho-
tovoltaic or PV) and wind energy. The integration of
such sources into the power grid is challenging, how-
ever, due to their variable and intermittent energy out-
put. To effectively use them on a large scale, it is es-
sential to be able to predict power generation at a fine-
grained level. We describe a novel Bayesian ensemble
methodology involving three diverse predictors. Each
predictor estimates mixing coefficients for integrating
PV generation output profiles but captures fundamen-
tally different characteristics. Two of them employ clas-
sical parameterized (naive Bayes) and non-parametric
(nearest neighbor) methods to model the relationship
between weather forecasts and PV output. The third pre-
dictor captures the sequentiality implicit in PV genera-
tion and uses motifs mined from historical data to es-
timate the most likely mixture weights using a stream
prediction methodology. We demonstrate the success
and superiority of our methods on real PV data from
two locations that exhibit diverse weather conditions.
Predictions from our model can be harnessed to opti-
mize scheduling of delay tolerant workloads, e.g., in a
data center.

Introduction
Increasingly, local and distributed power generation e.g.,
through solar (photovoltaic or PV), wind, fuel cells, etc., is
gaining traction. In fact, integration of distributed, renewable
power sources into the power grid is an important goal of the
smart grid effort. There are several benefits of deploying re-
newables, e.g., decreased reliance (and thus, demand) on the
public electric grid, reduction in carbon emissions, and sig-
nificantly lower transmission and distribution losses. Finally,
there are emerging government mandates on increasing the
proportion of energy coming from renewables, e.g., the Sen-
ate Bill X1-2 in California, which requires that one-third of
the state’s electricity come from renewable sources by 2020.

However, renewable power sources such as photovoltaic
(PV) arrays and wind are both variable and intermittent in
their energy output, which makes integration with the power
grid challenging. PV output is affected by temporal factors
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such as the time of day and day of the year, and environ-
mental factors such as cloud cover, temperature, and air pol-
lution. To effectively use such sources at a large scale, it is
essential to be able to predict power generation. As an ex-
ample, a fine-grained PV prediction model can help improve
workload management in data centers. In particular, a data
center’s workloads may be “shaped” so as to closely match
the expected generation profile, thereby maximizing the use
of locally generated electricity.

In this paper, we propose a Bayesian ensemble of three
heterogeneous models for fine-grained prediction of PV out-
put. Our contributions are:
1. The use of multiple diverse predictors to address fine-

grained PV prediction; while two of the predictors employ
classical parametrized (naive Bayes) and non-parametric
(nearest neighbor) methods, we demonstrate the use of a
novel predictor based on motif mining from discretized
PV profiles.

2. To accommodate variations in weather profiles, a system-
atic approach to weight profiles using a Bayesian ensem-
ble; thus accommodating both local and global character-
istics in PV prediction.

3. Demonstration of our approach on real data from two lo-
cations, and exploring its application to data center work-
load scheduling.

Related Work
Comprehensive surveys on time series prediction (Brock-
well and Davis 2002; Montgomery, Jennings, and Kulahci
2008) exist that provide overviews of classical methods from
ARMA to modeling heteroskedasticity (we implement some
of these in this paper for comparison purposes). More re-
lated to energy prediction, a range of methods have been
explored, e.g., weighted averages of energy received dur-
ing the same time-of-the-day over few previous days (Cox
1961). Piorno et al. (2009) extended this idea to include cur-
rent day energy production values as well. However, these
works did not explicitly use the associated weather condi-
tions as a basis for modeling. Sharma et al. (2011b) con-
sidered the impact of the weather conditions explicitly and
used an SVM classifier in conjunction with a RBF kernel
to predict solar irradiation. In an earlier work (Sharma et
al. 2011a), the same authors showed that irradiation patterns



and Solar PV generation obey a highly linear relationship,
and thus conclude that irradiance prediction was in turn pre-
dicting the Solar PV generation implicitly. In other works,
Lorenz et al. (2009) used a benchmarking approach to esti-
mate the power generation from photovoltaic cells. Bofinger
et al. (2006) proposed an algorithm where the forecasts of an
European weather prediction center (of midrange weathers)
were refined by local statistical models to obtain a fine tuned
forecast. Other works on temporal modeling with applica-
tions to sustainability focus on motif mining; e.g., Patnaik
et al. (2011) proposed a novel approach to convert multi-
variate time-series data into a stream of symbols and mine
frequent episodes in the stream to characterize sustainable
regions of operation in a data center. Hao et al. (2011) de-
scribe an algorithm for peak preserving time series predic-
tion with application to data centers.

Problem Formulation
Our goal is to predict photovoltaic (PV) power generation
from i) historic PV power generation data, and, ii) available
weather forecast data. Without loss of generality, we focus
on fine-grained prediction for the next day in one hour inter-
vals. Such predictions are useful in scheduling delay tolerant
work load in a data center that “follows” renewable supply
(Krioukov et al. 2011). Furthermore, these predictions need
to be updated as more accurate weather forecast data and
generation data from earlier in the day become available.

Let us denote the actual PV generation for jth hour of
ith day by ai,j . Let I be the number of days and J be
the maximum number of hours per day for which data is
available. Then, the actual PV generation values for all the
time points can be expressed as a I × J matrix, which we
denote as A = [ai,j ]I×J Corresponding to each entry of
PV generation, there is a vector of weather conditions. As-
suming K unique weather attributes (such as temperature,
humidity, etc.), each time point is associated with vector
ωi,j = 〈ωi,j [1], ωi,j [2], ..ωi,j [K]〉, where ωi,j [k] denotes the
value for the k-th weather condition for the time-slot (i, j).
Corresponding to the PV generation matrix, we can define
a matrix of weather conditions given by ω = [ωi,j ]I×J .
Finally, for each time slot, weather forecast data is contin-
uously collected. The predicted weather condition for jth

hour of the ith day, at an offset of t hours is given by the
vector ρi,j,t = 〈ρi,j,t[1], ρi,j,t[2], ..., ρi,j,t[K]〉.

Then, with reference to time-slot (e, f), given the val-
ues for ai,j and ωi,j ,∀(i, j) ≤ (e, f) and weather fore-
cast ρe,f+1,1, ρe,f+2,2, .., ρe,J,J−f ; we need to determine
the prediction for PV generation for the remaining time slots
of the day, i.e., (e, f), (e, f + 1), ..(e, J).

Methods
We propose a novel Bayesian ensemble method that aggre-
gates diverse predictors to solve the PV prediction problem
described above. An architectural overview of the method
is shown in Figure 1. As an initial pre-processing step, we
determine the common modes of daily PV generation pro-
files via distance based clustering of historical generation
data. Once such profiles are discovered, we represent the

Figure 1: Schematic Diagram of the proposed Bayesian En-
semble method. All the predictors make use of the profiles
discovered from historical data.

unknown PV generation of a day as a mixture of these pro-
files. The mixture coefficients are independently estimated
using three different predictors and finally averaged using a
Bayesian approach. These predictors are (i) a modified naive
Bayes classifier that derives its features from weather fore-
cast; (ii) a weighted k-nearest neighbor classifier that uses
past generation during the same day as features; and, (iii) a
predictor based on motifs of day profiles in the recent past.

Profile Discovery. The first step is profile discovery which
takes as input the available historic PV generation data and
outputs characteristic day long profiles. Let us denote the
actual PV generation for an entire ith day by the vector
~xi which can be written as: ~xi = 〈ai,1, ai,2, · · · , ai,J〉.
Then we can express the entire PV dataset (A) as, A =

( ~x1, ~x2, .., ~xI)
T .

This dataset A is clustered using Euclidean distance be-
tween the J dimensional feature vectors (i.e power genera-
tion for each day) by k-means (Lloyd 1982) algorithm into
N clusters. The value of N is a parameter in the ensemble
method and is estimated by minimizing the cross-validation
error of the ensemble, keeping other parameters fixed. This
yields N day long profiles. Let us denote these profiles by
D = {D1, D2, .., DN} and the corresponding centroids by
µ = {µ1, µ2, · · ·µN}. This step is required to be run only
once on the entire dataset.

Naive Bayesian predictor. The NB predictor estimates
the mixture coefficients given the weather forecast, as-
suming conditional independence of features (we assume
they follow Gaussian distributions). If we denote all the
training information obtained from the weather-PV ta-
ble, such as the likelihood functions and priors of the
profiles, by γ, and the weather forecast by ρi,j =
〈ρi,j+1,1, ρi,j+2,2, · · · , ρi,J,J−j〉, the posterior probability
of profile labels, for each remaining time slots, is computed



as:

Pr(Dn|ρi,j+t,t, γ) ∝

(∏
k

L(Dn|ρi,j+t,t[k])

)
Pr(Dn)

finally giving

Pr(Dn|ρi,j , γ, C1) =

J−j∑
t=1

Pr(Dn|ρi,j+t,t, γ)

N∑
n=1

J−j∑
t=1

Pr(Dn|ρi,j+t,t, γ)

(1)

where C1 indicates classifier 1.

k-NN based predictor. The k-NN (Dudani 1976) based
predictor uses prior PV generation during the same day as a
feature and assigns mixing coefficients based on Euclidean
distance from centroids of discovered daily profiles. In order
to make a prediction at the jth hour of the ith day for the rest
of that day, we consider the already observed PV output val-
ues for the ith day ~xi(1 : j) = {ai,1, ai,2, · · · , ai,j}. Next,
we find the Euclidean distance of this vector to the truncated
centroid vectors (first j dimensions) of the PV profiles and
find the probability of the ith day belonging to a cluster as
given by the following equation.

Pr(~xi ∈ Dn|~xi(1 : j), C2) =
1

φ‖~xi(1 : j)− ~µn(1 : j)‖2
(2)

where φ is a normalizing constant found as: φ =∑
n

1
‖~xi(1:j)−~µn(1:j)‖2

, where C2 indicates classifier 2.

Motif based Predictor. The final predictor exploits the se-
quentiality in PV generation between successive days to find
motifs and give membership estimates of the profiles based
on such motifs. For this step, we consider the entire PV data
as a stream of profile labels. We further consider a “window
size”: the maximum number of past days that can influence
the profile and treat the stream as a group of vectors of the
form di−1, di−2, · · · , di−W where dj ∈ D (j < i) denotes
the profile label of the jth data point. Sliding the window
we can get different values of such vectors and can mine for
motifs.

Definition 1: For a window Wi (|Wi| = W ) containing
labels 〈di−W , · · · , di−2, di−1〉, eligible episodes are defined
as all such sequences ep = 〈dp1 , dp2 , dp3 , · · · 〉, such that
p1 < p2 < p3 < · · · .

Definition 1 formalizes the term eligible. As evident from
the definition, we allow episodes to contain gaps. The only
criterion is that they must maintain the temporal order. Fur-
thermore, we can define an episode ep1 to be a sub-episode
of ep2, denoted by ep1 ≤ ep2, if ep1 is a sub-sequence of
ep2. From the definition of sub-episodes it is evident that
if ep1 ≤ ep2 then, ep1 6∈ Wj implies ep2 6∈ Wj ; i.e. the
sub-episode property is anti-monotonic. The support of an
episode epi ,denoted by supepi , is equal to the number of
windows Wj , such that epi ∈ Wj . Finally we can now de-
fined a maximal frequent eligible episode as follows:

Definition 2: An eligible episode epi is maximal frequent
iff:

Figure 2: Illustration to show the process of finding motifs

1. supepi > τ

2. 6 ∃epj such that epi ≤ epj

Thus, we can use an Apriori approach (Agrawal and
Srikant 1994) to prune out episodes when trying to find the
maximally frequent ones (as relation is anti-monotonic).

From the training data set, we consider such windows of
size W and through apriori-counting as in (Patnaik et al.
2011) get the entire corpus of maximally frequent episodes
(FE) and their corresponding supports. We refer to such
maximally frequent episodes as motifs. Here τ , the support
threshold is a parameter and as before, we estimate this value
through cross-validation keeping the other values constant.

While predicting for the i-th day, we need to find mo-
tifs which contains the i-th label and labels of some of the
previous days. For this we chose the immediately preceding
window of size W − 1 (since the label for i-th day must al-
ready be part of the motifs). To find mixing coefficient of
profile Dn for the ith day, we consider all those maximally
frequent episodes that end with Dn denoted by ep(Dn).
Let us denote the set of all such episodes by 〈ep(Dn)〉 =
{ep(Dn)1, ..., ep(Dn)P } where P denotes the number of
such episodes in the set. Then, within a window Wi, sup-
port of the entire set is given by:

sup(〈ep(Dn)〉) =
∑
p

supep(Dn)p

Then membership of a profile is given by:
Pr(~xi ∈ Dn|~xi−1, ~xi−2, .., ~xi−W−1, C3) =

sup(〈ep(Dn)〉)
N∑

n=1

sup(〈ep(Dn)〉)

(3)
where C3 indicates classifier 3.

This counting step can be potentially very expensive.
However, for the current problem the best window sizes are
small. Through cross-validation we picked a window of size



5 (from the range 3 to 10). Hence, the counting step, even if
naively implemented, is not too expensive.

Bayesian Model Averaging Finally, we aggregate the
memberships obtained from the three predictors and com-
bine them to arrive at the final prediction as follows.

P (~xi ∈ Dn|Di,j = 〈~xi(1 : j), ρi,j , ~xi−1, ~xi−2, .., ~xi−W−1〉)
=

∑3
l=1 P (~xi ∈ Dn, Cl|Di,j)

=
∑3

l=1 P (~xi ∈ Dn|Cl,Di,j)× P (Cl|Di,j)
= P (~xi ∈ Dn|C1, ρi,j)P (C1|Di,j)+
P ((~xi ∈ Dn|C2, ~xi(1 : j))P (C2|Di,j)+
P (~xi ∈ Dn|C3, ~xi−1, ~xi−2, .., ~xi−W−1)P (C3|Di,j)

(4)
We use Bayesian Model Averaging (BMA), as outlined in

(Raftery et al. 2005), operating on mutually exclusive parts
of the data to compute the values of P (Cl|Di,j).

P (Cl|Di,j) ∝ P (Di,j |Cl)× P (Cl) (5)

Assuming a uniform prior on the classifiers, equation 5 can
be written as:

P (Cl|Di,j) ∝ P (Di,j |Cl) (6)

The values of P (Di,j |Cl) can be viewed as the proportion
of data explained (truly predicted) when using classifier Ci.
This can be estimated by constructing a confusion matrix
and taking the relative frequency of true positives as an esti-
mate.

Then the predicted solar PV values can be estimated as :

E (~xi(j + 1 : J)|Di,j)
=

∑
~xi(j+1:J)

~xi(j + 1 : J)P (~xi(j + 1 : J)|Di,j)

=
∑

~xi(j+1:J)

~xi(j + 1 : J)
∑N

n=1 P (~xi(j + 1 : J), ~xi ∈ Dn|Di,j)

=
∑

~xi(j+1:J)

~xi(j + 1 : J)
∑N

n=1 P (~xi(j + 1 : J)|~xi ∈ Dn)

×P (~xi ∈ Dn|Di,j)
=

∑
n

∑
~xi(j+1:J)

(~xi(j + 1 : J)P (~xi(j + 1 : J)|~xi ∈ Dn))

×P (~xi ∈ Dn|Di,j)
=

∑
n

~µn(j + 1 : J)P (~xi ∈ Dn|Di,j)

(7)

Baseline Models
Previous Day as prediction This is the simplest baseline
model, where prediction for a particular hour during the day
is simply the PV generation during the same hour on the
previous day.

Autoregression with weather In this model, autoregres-
sion outputs as in (Piorno et al. 2009) are explicitly mod-
ified by the influence of weather information. All weather
attributes except sunrise and sunset times are clustered into
NC groups using k-means clustering (Lloyd 1982) based
on actual solar PV generations corresponding to these con-
ditions in the training set. A set of such weather attributes is
represented by the mean Solar PV value of the correspond-
ing cluster, denoted by l(i, j). The model can then be given

separately for J −1 hours (based on offset of prediction) as:

Ai,j = βt
1 ∗ 1 + βt

2 ∗ l(i, j) + βt
3 ∗ [i− SR(j)]

+βt
4 ∗ [ST (j)i] + βt

5 ∗ P a
i,j,t + ε

(8)

where P a
i,j,t is the auto-regressed prediction from (Piorno

et al. 2009), ε is the error term we try to minimize and the
weights {β} are estimated using linear least square regres-
sion.

Stagewise Modelling Another baseline model tried is a
stagewise model. This draws inspiration from (Hocking
1976), where the prediction is done in correlated stages :
improving the result at every additional stage.

Here we consider an average model to the actual data as
the first stage, auto-regression as the next and, weather re-
gression as the final one, where only the error values from a
preceding stage is passed onto the next one.

Experimental Results
Datasets. Data was collected from a 154 kW PV installa-
tion at a commercial building in Palo Alto, CA. PV output
(in kWh) in 5 min intervals was collected from March 2011
to November 2011 (267 days) and aggregated hourly. Hourly
weather data was collected from a nearby weather station
and included temperature, humidity, visibility and weather
conditions, which mainly relate to cloud cover and precipi-
tation. We also needed weather forecast data, which is typ-
ically not available after the fact. We ran a script to collect
weather forecast data every hour. We also collected solar and
weather data from a site in Amherst, MA.

Data preparation. The data for this experiment contains
a total of 3,747 data points with 69 missing values. While
the PV generation values are numeric, the corresponding
weather data contains both numeric and categorical vari-
ables. The numeric values were imputed using linear inter-
polation while a majority mechanism over a window was
used for the categorical ones. We use 6-fold cross valida-
tion for evaluating predictor performance and for estimating
some parameters. To account for seasonal dependence, each
month is uniformly split among all folds.

Parameters. Some heuristics were applied to compute the
probabilities of the Bayesian ensemble method. As men-
tioned, the likelihood needs to be estimated for the classifiers
(Cl). We assume the values P (Di,j |Cl) to be dependant only
on the hour of the day i.e. we neglect the effect of seasons on
classifier beliefs. Under this assumption, ideally the values
need to be estimated for each hour. Instead here we apply
a simple heuristic. We assume that the data is progressively
explained better by the k-NN estimator (C2) while the mo-
tif estimator, which estimates in a global sense i.e., without
looking at the data, explains the data in a consistent manner
irrespective of the hour of the day. These heuristics are given
below:

P (Di,j |C3) = θ
P (Di,j |C2) = min(1− θ, α× j + β)
P (Di,j |C1) = 1− θ − P (Di,j |C2)

(9)

where all the values in the left hand side of the equations are
bounded between 0 and 1 during computation.



Predictor training. For all methods, parameters (includ-
ing the heuristic combination weights) were selected by
training over a range of values and picking the one with
least cross-validation error. The basic daily generation pro-
files were extracted by k-means clustering over the entire
dataset. The number of clusters were set at 10 based on
cross-validation over 5 to 15 clusters. Some of the daily pro-
files obtained are shown in Figure 3. Each plot represents
a cluster, and the intra-cluster variance is shown by box-
plots. Cluster 2 shows a high level of generation and a low
variance, likely corresponding to clear summer days, while
Cluster 6 is likely related to cloudy conditions, winter days
when the angle of sun is low, or when some of PV panels are
not operating due to an anomaly.

Figure 3: Six of the ten daily profiles obtained via clustering.

For the motif-based predictor, a threshold support param-
eter of τ = 70 and a window size of 5 were used. A total of
49 maximal frequent episodes were found. Since this num-
ber is not large, during prediction for finding motifs that end
in a particular symbol, even a naive strategy for counting
support will work. Also, since the motifs are day long, this
only needs to be done once per day.
Error metrics. For comparing the performance of the
models, three distinct error metrics were considered. Us-
ing A to denote the actual output and P for the pre-
dicted, these are defined as — (1) Percentage absolute er-
ror:

∑
Ai,j>3

∣∣∣Ai,j−Pi,j

Ai,j

∣∣∣ ∗ 100%; (2) Percentage root mean

square error:

√∑
Ai,j>3

(
Ai,j−Pi,j

Ai,j

)2
∗ 100%; (3) Relative

absolute error: error =
∑

|Pi,j−Ai,j |∑
|Ai,j−Āj |

∗ 100. For (1) and (2),
errors for only the values Ai,j > 3 are considered as er-
rors corresponding to smaller values in the denominator may
dominate the overall error. Also, for the system concerned
any PV generation less than 3kwH is unusable.

Results Based on the cross-validation error, we evaluate
two variants of the proposed methods. These are Ensemble2,
which is a Bayesian combination of two predictors (NB and
k-NN) and Ensemble3, which includes the motif-based pre-
dictor as well. In addition, three baseline methods are also
included: previous day as prediction (PreviousDay), auto-
regression with weather (ARWeather), and stagewise regres-

Method Testing Error
Per. Abs. Per. RMS Rel. Abs.

Error Error Error

PreviousDay 20.54 20.65 20.81
ARWeather 18.54 18.31 19.73
Stagewise 12.77 12.68 15.66
Ensemble2 10.04 10.01 10.01
Ensemble3 8.13 8.21 8.34

Table 1: Performance at 1-hour offset.

sion (Stagewise). The results of these methods are summa-
rized in Table 1.

Our proposed methods perform better than the three base-
line methods. Ensemble3 performs about 4% better than the
best baseline method (Stagewise), and about 1% better that
Ensemble2. We also present an unpaired t-test of the com-
peting methods against Ensemble3 in Table 2 and we find
that our results are statistically significant.The box plot of
percentage errors together with the raw values are shown in
Figure 4. The red dot indicates the average value. The aver-
age error and variance is least for Ensemble3. As expected,
PreviousDay fares the worst. Figure 5 shows the residual er-
rors for the five methods. Again, the superior performance
of Ensemble2 and Ensemble3 (both in terms of average and
variance) is apparent.

Figure 4: Comparison of the error (%) of different methods.

Figure 5: Residual error of the methods.



Figure 6: Error conditioned on weather and hour of day (En-
semble3 method).

Method Unpaired t-test with respect to Ensemble3
Std. Error t 95% Conf. Interval Two-tailed P Significance

PreviousDay 1.113 11.1474 9.9295 to 14.8905 < 0.0001 Extremely Significant
ARWeather 0.882 11.8070 8.4455 to 12.3745 < 0.0001 Extremely Significant
Stagewise 0.667 6.9570 3.1539 to 6.1261 < 0.0001 Extremely Significant
Ensemble2 0.514 3.7167 0.7650 to 3.0550 0.0040 Very Significant

Table 2: Unpaired t-tests on 1-hr prediction data compared
against Ensemle3. N = 6 and degrees of freedom= 10

Figure 6 shows the percentage error distribution for En-
semble3 conditioned on weather and hour of day. The er-
rors are lowest for clear days, and worst for rain conditions.
Cloudy conditions increase both average error and variance.

We observed that some of the predictions were higher
than the capacity of the PV system, so for all methods we
capped the maximum predicted output. In fact, we realized
we could do better. From almost an year of data, we found
the maximum generation for each hour and bounded the out-
put by that amount plus a small margin. This can be further
improved to add the month (season) as well. This optimiza-
tion was applied to all methods and the gain in performance
was in the range of 0.6% to 1%.

Updating predictions. As we get closer to the hour for
which a prediction is made, we update the prediction based
on better weather forecast and the PV generation already
seen that day. Figure 7 shows the progressive improvement
in average accuracy of PV output prediction for 12pm. The
plot shows the cross-validation percentage absolute errors
with standard deviation marked. The Bayesian ensemble
method (Ensemble3) performs the best. One likely reason
is the fact that in the ensemble method we predict member-
ships of the characteristic daily profiles and thus consider a
more global view. On the other hand, the regression models
are tailored to one hour prediction and the future hour pre-
dictions are based on assuming the predictions as the true
value for the unknown hours (for more than one hour off-
set in prediction). Furthermore, the standard deviation for
the ensemble method is also lower than the other models

(except the average one), mainly because we are selecting
among some known patterns and standard deviation results
from difference in the mixing coefficients rather than com-
pletely new predictions as is the case in regression models.

Figure 7: Change in error(%) as the prediction is updated.

Applying fine-grained PV prediction to data centers.
The accurate prediction of PV generation is an important
functionality required by proposed net-zero energy data cen-
ters (Arlitt et al. 2012). Data centers use a lot of electricity,
and their operators are looking for ways to reduce their de-
pendence on public electric grids. Within data centers, an
opportunity exists to reschedule non-critical (i.e., delay tol-
erant) workloads such that they run when PV generated elec-
tricity is available, so operators have the option of turning off
IT and cooling infrastructure at other times of the day. Hav-
ing accurate predictions of the available PV output enables
this renewable source of energy to be utilized much more ef-
fectively. For example, Figure 8(a) shows a typical data cen-
ter workload where non-critical jobs are uniformly sched-
uled throughout the day. If accurate, fine-grained PV predic-
tions are available, then the non-critical jobs can be sched-
uled such that they run only when PV power is available
(Figure 8(b)). In this specific case, the optimized workload
schedule results in 65% less grid energy being consumed
than with the original schedule, as the data center is able to
consume most of the renewable energy directly (Arlitt et al.
2012).

Discussion
We have demonstrated a systematic approach to integrate
multiple predictors for PV output prediction. Our encourag-
ing results sets the foundation for more detailed modeling.
In particular, it is known (Sharma et al. 2011b) that solar ir-
radiance and PV generation generally follow a highly linear
relationship. Thus, our models here can easily be adapted
to predict for solar irradiance. We have analyzed histori-
cal data for the site mentioned in (Sharma et al. 2011b) for
the period March 2006 to May 2007. The cross-fold aver-
age rms error for the Bayesian ensemble method for the



(a)

(b)

Figure 8: (a) Data center workload schedule; (b) Optimized work-
load schedule based on predicted PV energy supply (Arlitt et al.
2012)

entire period was found to 101 watts/m2. This was signif-
icantly lower than that for the SVM-RBF model proposed
in (Sharma et al. 2011b) where for a period of observation
Jan 2010 to Oct 2010 the reported prediction rms error was
128 watts/m2. (However, due to unavailability of predicted
values of weather conditions for the site, we used actual
weather conditions to make our prediction.) Ongoing work
is focused on validating the efficacy of predicting the irradi-
ance as a precursor to PV generation.
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