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Abstract

Modern epidemiological forecasts of common illnesses,
such as the flu, rely on both traditional surveillance
sources as well as digital surveillance data. However,
most published studies have been retrospective. Con-
currently, the reports about flu activity generally lags
by several weeks and even when published are revised
for several weeks more. We posit that effectively han-
dling this uncertainty is one of the key challenges for
a real-time prediction system in this sphere. In this
paper, we present a detailed prospective analysis on the
generation of robust quantitative predictions about tem-
poral trends of flu activity, using several surrogate data
sources for 15 Latin American countries. We present our
findings about the limitations and possible advantages
of correcting the uncertainty associated with official flu
estimates. We also compare the prediction accuracy
between model-level fusion of different surrogate data
sources against data-level fusion. Finally, we present
a novel matrix factorization approach using neighbor-
hood embedding to predict flu case counts. Comparing
our proposed ensemble method against several baseline
methods helps us demarcate the importance of different
data sources for the countries under consideration.

1 Introduction

Surveillance reports published by health organizations
are one of the primary resources for monitoring in-
fluenza like illness (ILI) cases. For years, these reports
have been the primary source of information used by
healthcare officials for policy making decisions. How-
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ever, traditional surveillance reports are published with
a considerable delay and thus recent research has fo-
cused on mining social signals from search engine query
volume [1, 2] and social media chatter [3, 4, 5, 6, 7].

One of the pioneering work in this field, was due to
Ginsberg et al. [2] where ILI case counts are predicted
from the volume of search engine queries. This work
inspired significant follow-on work, such as [1], where
Yuan et al. used search query data from Baidu (a
popular search engine in China) to detect influenza
outbreaks. More real-time ILI detection [4] systems
have been proposed by modeling Twitter streams.

Apart from such social media sources, there has also
been considerable research on exploiting physical indi-
cators such as climate data. These primary advantage
of such data sources is that the effects are much more
causal and less noisy. Shaman et. al. [8, 9, 10] explored
this area in detail and found absolute humidity to be a
good indicator of influenza outbreaks.

While the aforementioned works have made impor-
tant strides, there are important areas that have been
relatively less studied. First, only a few works have fo-
cused on combining multiple data sources [11, 3] to aid
in forecasting. In particular, to the best of our knowl-
edge there has been no work that investigates the com-
bination of social indicators and physical indicators to
forecast ILI incidence. Second, and more importantly,
official estimates as reported by health organizations
(e.g., WHO, PAHO) are often lagged by several weeks
and even when reported are typically revised for several
weeks before the case counts are finalized. Real-time
prediction systems must be designed to handle the fore-
casting of such a ‘moving target’. Finally, most existing
works have been retrospective and not set in the context
of a formal data mining validation framework. To over-
come these deficiencies, we propose a novel approach to
ILI case count forecasting. Our contributions are:

• Our approach integrates both social indicators and
physical indicators and thus leverages the selec-
tive superiorities of both types of feature sets.
We systematize such integration using a novel ma-
trix factorization-based regression approach using
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Figure 1: Our ILI data pipeline, depicting six different data sources
used in this paper to forecast ILI case counts.

neighborhood embedding, thus helping account for
non-linear relationships between the surrogates and
the official ILI estimates.

• We investigate the efficacy of combining diverse
sources using data fusion and model fusion meth-
ods. We also discuss their relative strengths.

• We propose different ways of handling uncertainties
in the official estimates and factor these uncertain-
ties into our prediction models.

• Finally, we present a detailed and prospective
analysis of our proposed methods by comparing
predictions from a near-horizon real time prediction
system to official estimates of ILI case counts in 15
countries of Latin America.

2 Related Works

Related work naturally falls into the categories of social
media analytics, physical indicators, and event dynam-
ics modeling. These are next described as follows:

Social media analytics: Most relevant works us-
ing social media analytics focuses on Twitter, specifi-
cally, by tracking a dictionary of ILI-related keywords
in the data stream. Such investigations have often fo-
cused on the importance of diversity in keyword lists,
e.g., [5, 6]. In [5], Kanhabua and Nejdl used clustering
methods to determine important topics in Twitter data,
constructed time series for matched keywords, and used
Jaccards coefficient to characterize the temporal diver-
sity of tweets. They noted, that such temporal diversity
may be correlated with real-world ILI outbreaks. In [6]
the authors studied the dynamics between the change
in circulated tweets and the H1N1 virus. Inspired by

these works, we curated a custom ILI related keyword
dictionary which is described in details in Section 6.3.1.

Physical indicators for detecting ILI inci-
dence levels: Tamerius et al. [8] investigated the exis-
tence of seasonal cycles of influenza epidemics in differ-
ent climate regions. For the said work, they considered
climatic information from 78 globally distributed sites.
Using logistic regression they found that, strong corre-
lations exist between influenza epidemics and weather
conditions, especially when conditions are cold-dry or
humid-rainy. Similarly, exciting results were reported
by Shaman et. al. in [9, 10] where they discovered ab-
solute humidity to be a key indicator of flu. To uncover
these relationships they used non-linear regressors such
as Kalman filters, and this was a key inspiration for us
in finding a uniform model for the varied data sources
as explained in Section 3.1.

Event dynamics modeling: Denecke et al. [3]
proposed an event-based approach for early prediction
of ILI threats [3]. Their method (M-Eco) considers
multiple resources such as Twitter, TV reports, online
news articles, and blogs and uses clustering to identify
signals for event detection. Network dynamic solutions
have also been used [12, 13] to study the behavior of an
epidemic in a society.

3 Problem Formulation

In this section, we formally introduce the problem. Let
P = 〈P1, P2, . . . , PT 〉 denote the known total weekly ILI
case count for the country under consideration, where
Pt denotes the case count for time point t and T denotes
the time point till which the ILI case count is known.
Corresponding to the ILI case count data, let us denote
the available surrogate information for the same country
by X = 〈X1,X2, . . . ,XT1〉, where T1 is the time point
till which the surrogate information is available and Xt
denotes the surrogate attributes for time point t (> T ).
The problem we desire to solve is to find a predictive
model (f) for the case count data, as presented formally
in Eqn 3.1.
(3.1) f : Pt = f (P,X )

In this paper, in order to better understand the
importance of different sources, we assume that the ILI
activities in different countries are independent of each
other.

3.1 Methods Focusing on the methods, we employ
non-linear temporal regressions over the surrogate at-
tributes to forecast the case count using three mod-
els: (a) Matrix Factorization Based Regression (MF),
(b) Nearest Neighbor Based Regression (NN), and (c)
Matrix Factorization Regression using Nearest Neighbor
embedding (MFN). For each of the methods, we define
two parameters: β and α. α is the lookahead window
length, denoting distance of the time point for predic-



tion from T ; β is the lookback window length denoting
the number of time points to look back in order to find
the regression relation between the case count and the
surrogate data.

We define regression vectors Vt and labels Lt,∀t =
1, . . . , T as below:.
Vt ≡ 〈Pt−β−α,Xt−β−α, Pt+1−β−α,Xt+1−β−α, . . . ,

Pt−α,Xt−α〉
Lt ≡ Pt

The regression vector for predicting the case count at
time point T ′(T +α > T ′ > T ) is given by equation 3.2.
(3.2)
VT ′ ≡ 〈PT ′−β−α,XT ′−β−α, Pt+1−β−α,Xt+1−β−α, . . . ,

PT ′−α,XT ′−α〉

Under these definitions we describe the models as fol-
lows:

3.1.1 Matrix Factorization Based Regression
(MF): Matrix Factorization is a well accepted tech-
nique in the recommender systems literature to
predict user preferences from incomplete user rat-
ings/information. Typically [14] a user-preference ma-
trix is factored into an user-factor and factor-preference
matrix. However, such factorizations are in-cognizant
of any temporal continuity. As such to enforce tempo-
ral continuity, to predict for the time point T ′(T + α >
T ′ > T ) we use the regression vectors and labels as de-
fined earlier, to define a m× n prediction matrix M, as
given in equation 3.3:

(3.3) M =


Vα+β+1 Lα+β+1

...
...

VT LT
VT ′ LT ′


The prediction matrix is factorized into a f × m

factor-feature matrix U and a f × n factor-prediction
matrix as:

M̂i,j = bu,i + UTi Fj

Here, bi,j is the baseline estimate given by:
(3.4) bi,j = M̄+ bj

where M̄ represents the all-element average and bj
represents the column wise deviations from the average
and is generally a free-parameter, i.e., it is fitted as
part of the optimization problem. U and F matrix are
estimated by minimizing the error function:

(3.5)

b∗, F, U = argmin(
m−1∑
i=1

(
Mi,n − M̂i,n

)2

+λ1(
n∑
j=1

b2j +
m−1∑
i=1

||Ui||2 +
n∑
j=1

||Fj ||2))

where λ1 is a regularization parameter. An important
design criteria in the error function of Eqn 3.5 is the fact

that we only compute the error between the predicted
label values and the actual label values i.e., the nth

column of the prediction matrix M. The rationale
behind this choice is the fact that unlike traditional
recommender systems we are only concerned with the
label column and can sacrifice reconstruction accuracies
for other columns.

The lookback window β, the factor size f and the
regularization parameter λ1 are estimated using cross-
validation and the final prediction for time point T ′ is
given by:

P̂T ′ = bm,n + UTmFm,n

3.1.2 Nearest Neighbor Based Regression
(NN): For our second class of models, viz. near-
est neighbor models, we define a training set
ΓNN = {Vt, Lt}, where Vt represents the re-
gression attributes and Lt denote the correspond-
ing labels. Also, let us define the set N (i) =
{k : Vk is one of the top K nearest neighbors of Vi}
where K indicates the maximum number of nearest
neighbors considered. The predicted count P̂T ′ for the
time point T ′ is given as:

(3.6) P̂T ′ = (
∑

k∈N (T ′)

θkLk,T−α)/
K∑
k=1

θk

Here θk indicates the weight assigned to the kth nearest
neighbor. Typically the inverse Euclidean distances to
VT ′ are chosen as the weights.

3.1.3 Matrix Factorization Based Regression
using Nearest Neighbor Embedding (MFN): It
has been shown in [15] that matrix factorization us-
ing nearest neighbor constraints can outperform classi-
cal matrix factorization approach as well as traditional
nearest neighbor approaches towards recommender sys-
tems. Drawing inspirations from the result, we modify
the method to suit the temporal nature of our problem
in similar ways as described in section 3.1.1. We again
define a similar prediction matrixM (see equation 3.3).
Following [15], we define the matrix decomposition rule
as

(3.7)
M̂i,j = bi,j + UTi Fj

+Fj |N (i)|− 1
2

∑
k∈N(i)(Mi,k − bi,k)xk

The key difference between equation 3.7 and the one
proposed in [15] is that we don’t have any term for
implicit feedback and, further, only the top K neighbors
as found through Euclidean distance are used. The
model is fitted using Eqn 3.8 as given below:

(3.8)

b∗, F, U, x∗ = argmin(
m−1∑
i=1

(
Mi,n − M̂i,n

)2

+λ2(
n∑
j=1

b2j +
m−1∑
i=1

||Ui||2 +
n∑
j=1

||Fj ||2 +
∑
k

||xk||2))



4 Ensemble Approaches

In the last section, we described different strategies to
correlate a specific source with the ILI case count of
a specific country and predict future ILI counts. In
practice, we desire to work with a multitude of data
sources and there are two broad ways to accomplish this
objective: (a) data level fusion, where a single regressor
is constructed from different data sources to the ILI case
count, and (b) model level fusion, where we build one
regressor for each data source and subsequently combine
the predictions from the models. In this section, we
describe these fusion methods. Experimental results
with both methods are presented in Section 7.

4.1 Data level fusion: Here we express the feature
vector X , as a tuple over all the different data sources
and then proceed with any one of the regression meth-
ods as outlined in Section 3.1. For example, while com-
bining Twitter and weather data sources (see Fig. 1),
the feature vector X is given by:

Xt = 〈Tt,Wt〉

where Tt and Wt denote attributes derived from Twitter
and weather, respectively.

4.2 Model level fusion: In this approach, the mod-
els are combined using matrix factorization regression
with nearest neighbor embedding by comparing the pre-
diction estimates from each model with the actual esti-
mate (since the ground truth can change as well) and the
average ILI case count for the month for the particular
country (to help organize a baseline). Let us denote the
average ILI case count for a particular calendar month
I for a given country by:

µI =
∑
t∈I

Pt/|{t ∈ I}|

Considering C different sources and hence C different
models, let us denote the prediction for the tth time
point from the cth model by cP̂t.

Using these definitions we can now proceed to
describe the fusion model. Essentially, the model is
similar to the one described in Section 3.1.3, where
the differences can be found in the way we construct
the feature vectors. Similar to Eqn 3.3, we construct a
prediction m′×n′ matrix for fusion given byCM where
the tth row is represented by equation 4.9.

(4.9) CMt =
[

1P̂t . . . C P̂t Pt

]
Then similar to Eqn 3.7, we factor this matrix into
latent factors, CU , CF , Cb∗ as given by Eqn 4.10:
(4.10)

CM̂i,j = µi + Cbj + CU
T
i CFj

+CFj |CN (i)|− 1
2

∑
k∈CN(i)(CMi,k − µi + Cbk)Cxk

so that the final prediction for the T th data point is
given by

P̂T = CM̂T , n
′.

The fitting function is given by equation 4.11:
(4.11)

Cb∗,CF,CU,Cx∗ = argmin(
m′−1∑
i=1

(
CMi,n′ − CM̂i,n′

)2

+λ3(
n′∑
j=1

Cb
2
j +

m′−1∑
i=1

||CUi||2 +
n′∑
j=1

||CFj ||2 +
∑
k ||Cxk||2))

As before the free parameters are estimated through
cross-validation.

5 Forecasting a Moving Target

One of the key challenges in creating a prospective
ILI case count predictor is the fact that the official
estimates are often delayed and, furthermore, even when
published the estimates are revised over a number of
weeks before these become finally stable. For this
paper, we concentrate on 15 Latin American countries
as described in Section 6 and consider the official ILI
estimates from the Pan American Health Organization
(PAHO).Thus we can categorize PAHO count values
downloaded on any week into three different types: (a)
the unknown PAHO counts represented by P̈t, (b) the
known and stable PAHO counts denoted by Ṗt, and (c)
the known and unstable PAHO counts denoted by P̃t.
While we desire to predict P̈t, the uncertainty associated
with P̃t introduces errors in the predictions. In this
section, we study the effects of such unstable data and
propose three different models to adjust these unstable
values to more accurate ones.

Figure 2a plots the relative error of an unstable
PAHO data series w.r.t. its final estimate, as a function
of time. It can be seen that different countries have
different stability characteristics: for some countries,
PAHO count values are stabilized very slowly whereas
for others they stabilize faster (esp as the number of
updates for a week increases). Stability behavior of
PAHO count values were also found to be dependent on
the time of the year as shown in Fig. 2b. To plot this
curve for Argentina, we categorized any week with less
than 100 cases to belong to a low season, greater than
300 to be a high season, and the remaining values to be
mid season (the thresholds were different for different
countries).

At the same time, the PAHO official updates pro-
vide an indication of the number of samples used to gen-
erate the case count estimate. Preliminary experiments
show that this size is correlated with the accuracy of ILI
case counts. In other words, in general, larger values of
statistical population size results in smaller relative er-
rors for ILI case count. Thus using both the number



(a) (b)

Figure 2: Average relative error of PAHO count values with respect
to stable values. (a) Comparison between Argentina and Colombia
(b) Comparison between different seasons for Argentina.

of samples and the lag in uploading the week data, we
can use machine learning techniques to revise the offi-
cially published PAHO estimates. Preliminary results
show that for different seasons and different countries,
we encounter different stability patterns. Therefore, any
PAHO count adjustment method should be customized
for seasons and countries separately.

Let us assume that Ṗ is the set of stable PAHO
counts for a specific country. Also, assume that the
sequence of updates for each stable PAHO count value
is available. In other words, for Ṗi we have the following
set:

Ṗi =
{
P

(1)
i , P

(2)
i , ..., P

(m)
i , ...

}
where P

(m)
i is the value of Pi after m weeks of update.

After recognizing high, low, and mid-season months
for the country, we can categorize each Ṗi to belong
to one of these categories. Then, for category S, an
adjustment dataset is constructed named as PAS which
is defined as follows:

PAS =
{

(1, P
(1)
i , Ṗi, N

(1)
i ), ..., (m,P

(m)
i , Ṗi, N

(m)
i ), ...

}
Each member of PAS is a tuple with four entries:

the first entry denotes the time slot that the sample
belongs to; the second entry is the actual unstable value
of Pi; the third entry is the related stable value; and

finally, N
(m)
i is the size of the statistical population for

that week.
In the next step, a linear regression algorithm is

used to adjust unstable PAHO values. In order to adjust
the PAHO values in the mth time slot of season S, we
use PAS set to learn a0, a1, a2, and a3 coefficients in
the following equation:

(5.12) ˆ̇P
(m)
i = a0 + a1m+ a2P

(m)
i + a3N

(m)
i

where ˆ̇P
(m)
i is the adjusted PAHO count value for the

mth time slot.
Experimental results show that this adjustment

method results in more accurate known PAHO values.
Average relative errors of the published unstable PAHO

values before and after correction for each country
are shown in Figure 3. While in a few cases, we
do not experience any improvement, in countries such
as Argentina and Paraguay, we experience significant
improvements.

Figure 3: Average relative error of PAHO count values before and
after correction for different countries.

Finally, similar to Eqn 5.12, in addition to P
(m)
i , one

can use only time difference (m) or size of population

(N
(m)
i ) to correct unstable PAHO values. Effect of

these corrections on overall accuracy of predictions are
explored in Section 7.

6 Experimental Setup

6.1 Reference Data. In this paper, we focus on
15 Latin American countries viz. Argentina, Bo-
livia, Costa Rica, Colombia, Chile, Ecuador, El Sal-
vador, Guatemala, French Guiana, Honduras, Mexico,
Nicaragua, Paraguay, Panama and Peru. We collected
weekly ILI counts from the official Pan American Health
Organization (PAHO) website(http://ais.paho.org/
phip/viz/ed_flu.asp), every day from January 2013
to August 2013. The estimates downloaded every day
for each country contain data from January 2010 to
the latest available week on the day of collection. This
dataset is stored in a database we refer to as the Tem-
poral Data Repository (TDR). The TDR is also times-
tamped so that for any given day, we can readily re-
trieve the ILI case counts that were download on that
day. This is important as historic data may be updated
by PAHO even a number of weeks after the first up-
date. For the purpose of experimental validation we
used the data for the period Jan 2010 to December 2012
as the static training set. We considered Wednesdays of
the weeks as a reference day within a week. For each
Wednesday from Jan 2013 to July 2013, we used the lat-
est available PAHO data in TDR for that day and pre-
dicted 2 weeks from the last available week for which the
PAHO data was available. These predictions are next
evaluated against the final ILI case count as downloaded
on September 1, 2013 and we report the performance of
our algorithms in Section 7.

http://ais.paho.org/phip/viz/ed_flu.asp
http://ais.paho.org/phip/viz/ed_flu.asp


6.2 Evaluation criteria. We evaluate the prediction
accuracy of the different algorithms using a modified
version of percentage relative error:

(6.13) A =
4

Np

te∑
t=ts

|Pt − P̂t|
max(Pt, P̂t, 10)

where ts and te indicate the starting and the ending
time point for which predictions were generated. Np
indicates the number of time points over the same time
period (i.e. Np = te − ts + 1). Note that the measure
is scaled to have values in [0, 4] and the denominator is
designed to not over-penalize small deviations from the
true ILI case count (e.g., when the true case count is
0 and the predicted count is 1). It is to be noted that
the accuracy metric so defined is non-convex and is in
general multi-modal.

6.3 Surrogate data sources. Before describing our
data sources in detail, we describe our overall method-
ology for organizing a flu-related dictionary (for track-
ing in multiple media such as news, tweets, and search
queries).

6.3.1 Dictionary creation. The keywords relating
to ILI were organized from a seed set of words and
expanded using a combination of time-series correlation
analysis and pseudo-query expansion. The seed set
of keywords (e.g., gripe) was constructed in Spanish,
Portuguese, and English using feedback from our in-
house subject matter experts.

Pseudo-query expansion. Using the seed set,
we crawled the top 20 web sites (according to Google
Search) associated with each word in this set. We
also crawled some expert sites such as the official
CDC website and equivalent websites of the coun-
tries under consideration, detailing the causes, symp-
toms and treatment for influenza. Additionally we
crawled a few hand-picked websites such as http://

www.flufacts.com and http://health.yahoo.net/

channel/flu_treatments. We filtered the words from
these sites using standard language processing filtering
techniques such as stopword removal and Porter stem-
ming. The filtered set of keywords were then ranked
according to the absolute frequency of occurrence. The
top 500 words for Spanish and English were then se-
lected. For example, words such as enfermedad and
pandemia were obtained from this step.

Time-series correlation analysis. Next we used
Google Correlate (now a part of Google Trends) to iden-
tify keywords most correlated with the ILI case count
time-series for each country. Once again these words
were found to be a mix of both English and Spanish. As
an added step in this process, we also compared time-
shifted ILI counts: left-shifted to capture the words
searched leading up to the actual flu infection and right-

shifted to capture the words commonly searched during
the tail of the infection. This entire exercise provided us
some interesting terms like ginger which has been used
as a natural herbal remedy in the eastern world. We
also found popular flu medications such as Acemuk and
Oseltamivir, which are also sold under the trade name
of Tamiflu as highly correlated search queries, especially
particularly for Argentina.

Final filtering. The set of terms obtained from
query expansion and correlation analysis were then
pruned by hand to obtain a vocabulary of 151 words.
We then performed a final correlation check and re-
tained a final set of 114 words.

6.3.2 Google Flu Trends (F): Google Flu Trends
(GFT, http://www.google.org/flutrends) is a tool
based on [16] and provided by Google.org which gives
weekly and up-to-date ILI case count estimates using
search query volumes. Of the countries under consid-
eration, GFT provides weekly estimates for only 6 of
them viz. Argentina, Bolivia, Chile, Mexico, Peru and
Paraguay. These estimates are typically at a different
scale than the ILI case counts provided by PAHO and
therefore need to be scaled accordingly. We collected
this data weekly on Monday from Jan 2013 to Aug 2013.
(The data downloaded on a particular day contains the
entire time-series from 2004 to the corresponding week.)

6.3.3 Google Search Trends (S): Google Search
Trends (GST, http://www.google.com/trends) is an-
other tool provided by Google. Using this tool we can
download an estimate of search query volume as a per-
centage over its own temporal history, filtered geograph-
ically. We download the search query volume time series
for the 114 keywords described earlier and convert the
percentage measures to absolute values using a static
dataset we downloaded on Oct 2012 when Google Search
Trends used to provide absolute query volumes.

6.3.4 Twitter (T ): Twitter data was collected from
Datasift.com and geotagged using an in-house geocoder.
We lemmatized the tweet contents and used language
detection and POS tagging to help differentiate relevant
from irrelevant uses of our keywords (e.g., the Spanish
word gripe, meaning flu, is part of our flu keyword
list as opposed to the undesired and unrelated English
word ‘gripe’). The resulting analysis yields a weekly
occurrence count of our dictionary in tweets.

6.3.5 HealthMap (H): Similar to Twitter, we also
collect flu-related news stories using HealthMap (http:
//healthmap.org), an online global disease alert sys-
tem capturing outbreak data from over 50,000 electronic
sources. Using this service we receive flu-related news
as a daily feed which is similarly enriched and filtered to
obtain a multivariate time series over lemmatized ver-

http://www.flufacts.com
http://www.flufacts.com
http://health.yahoo.net/channel/flu_treatments
http://health.yahoo.net/channel/flu_treatments
http://www.google.org/flutrends
http://www.google.com/trends
http://healthmap.org
http://healthmap.org


sion of the keywords. While Twitter is more suitable to
ascertain general public response, the HealthMap data
provides more detailed information but may capture the
trends at a slower rate. Thus each of these sources offers
utility in capturing different surrogate signals: Twitter
offers leading but noisy indicators whereas HealthMap
provides a slightly delayed but more reliable indicator.

6.3.6 OpenTable (O): We also use data on trends of
restaurant table reservations, initially studied in [17] to
be a potential early indicator for outbreak surveillance,
as another surrogate for ILI detection. This novel data
stream is based on the postulate that a higher than
average number of restaurants with table availability in
a region can serve as an indicator of an event of interest,
such as increase in flu cases. Table availability was
monitored using OpenTable (http://www.opentable.
com), an online restaurant reservation site with 28,000
restaurants at the time of this writing. Daily searches
were performed starting from September 2012 for a
table for two persons at lunch and dinner; between
12:30-3pm, and between 6-10:30pm. Data was collected
for Mexico by city (Cancun, Mexico City, Puebla,
Monterrey, and Guadalajara) and for the entire country.
The daily proportion (proportion used due to changes in
the number of restaurants in the system) of restaurants
with available tables was aggregated as a weekly time-
series.

6.3.7 Weather (W): All of the previously described
data sources can be termed as non-physical indicators
which can work suitably as indirect indicators about the
state of the population with respect to flu by exposing
different population characteristics. On the other hand,
meteorological data can be considered a more direct
and physical driver of influenza transmission [18]. It
has been shown in [9, 10, 8] that absolute humidity
can be directly used to predict the onset of influenza
epidemics. Here, we collect several other meteorological
indicators such as temperature and rainfall in addition
to humidity from the Global Data Assimilation System
(GDAS). We accessed this data in GRIB format from
http://ladsweb.nascom.nasa.gov/ at a resolution of
1o lat/long interval. However, looking at all the
lat/long for a country can often lead to noisy data.
As such we filtered the downloaded data and used the
indicators only around the surveillance centers. Finally,
we generated a times-series by using weekly-averages
of this date, for each country. We collected this data
weekly from Jan 2013 to August 2013.

7 Results

In this section, we present an exhaustive set of experi-
ments evaluating our algorithms over 6 months of pre-
dictions from Jan 2013 to August 2013. The final and

Table 5: ILI case count prediction accuracy for Mexico using
OpenTable data as a single source, and by combining it with all other
sources using model level fusion on uncorrected ILI case count data.

Method Lunch Dinner Lunch & Dinner

MF 1.92 2.23 2.31
NN 1.99 1.83 2.11
MFN 2.11 2.31 2.44
Model Fusion 2.96 2.87 2.99

stable estimates of ILI case counts are considered to be
the estimates downloaded from PAHO on Oct 1, 2013.
All models considered here were used to forecast 2 weeks
beyond the latest available PAHO ILI estimates. Key
findings are presented in Table. 1. We analyze some
important observations from this table next.

Figure 4: Accuracy of different methods for each country.

Can we ‘beat’ Google Flu Trends with our
custom dictionary? The key difference between
Google Flu Trends (which can be considered as a base
rate) and Google Search Trends is that the former uses a
closed dictionary whereas we constructed the dictionary
to use with GST. As can be seen Table 1, for majority
of the common countries (countries for which data from
both GST and GFT is present), regressors running on
GST consistently outperform those running on GFT
(with Mexico and Peru being the exception). Thus we
posit that the GST model devised here is a sufficiently
close approximation to GFT, with the added advantages
of having access to raw level data and being available
for more countries than GFT (only 6 of the 15 countries
we consider are present in the GFT database).
Which is the optimal regression model? From Ta-
ble 1, we can also analyze the three different regressors
proposed in Section 3.1 with respect to overall accuracy.
With respect to each individual source, we can see that
matrix factorization with nearest neighbor embedding
(MFN) performs the best in average over the countries.
For some countries such as Panama, when using only
GST, MFN performs poorer than vanilla MF; neverthe-
less the average accuracy over all countries for any given
data source is best when using MFN.
Which is the best strategy to combine multiple
data sources? As shown in Table 2, in overall,
model level fusion works better than data level fusion.

http://www.opentable.com
http://www.opentable.com
http://ladsweb.nascom.nasa.gov/


Table 1: Comparing forecasting accuracy of models using individual sources. Scores in this and other tables are normalized to [0,4] so that
4 is the most accurate.

Model Sources AR BO CL CR CO EC GF GT HN MX NI PA PY PE SV All

MF

W 2.78 2.46 2.39 2.14 2.70 2.22 2.12 2.63 2.52 2.73 2.31 2.21 2.49 2.77 2.61 2.47
H 2.81 2.31 2.22 1.92 2.43 2.04 2.11 2.57 2.33 2.48 2.39 2.15 2.18 2.47 2.33 2.32
T 2.37 2.35 2.18 2.03 2.21 2.12 1.83 2.12 2.29 2.03 1.89 2.06 1.96 2.20 2.21 2.12
F 2.34 2.11 2.29 N/A N/A N/A N/A N/A N/A 2.71 N/A N/A 2.31 2.24 N/A 2.33
S 2.48 2.21 2.33 2.04 2.31 2.21 1.93 2.03 2.15 2.51 2.42 2.52 2.33 1.93 2.30 2.24

NN

W 2.92 2.93 2.63 2.52 2.66 2.51 2.71 2.82 2.59 2.62 2.55 2.59 2.61 2.80 2.52 2.66
H 2.73 3.10 2.42 2.27 2.83 2.64 2.43 2.25 2.71 2.31 2.61 2.35 2.43 2.39 2.52 2.53
T 2.72 2.86 2.31 2.62 2.77 2.52 2.71 2.66 2.51 2.44 2.13 2.01 1.77 2.51 2.20 2.45
F 2.11 2.21 2.33 N/A N/A N/A N/A N/A N/A 2.19 N/A N/A 2.41 2.32 N/A 2.26
S 2.51 2.31 2.41 1.81 2.52 2.41 2.12 2.29 2.51 2.13 2.61 2.14 2.51 1.87 2.12 2.28

MFN

W 2.99 3.01 2.88 2.53 2.78 2.81 2.77 2.83 2.61 2.70 2.56 2.66 2.82 2.79 2.51 2.75
H 2.81 3.13 2.63 2.58 2.91 2.77 2.57 2.63 2.73 2.50 2.61 2.54 2.51 2.69 2.61 2.68
T 2.74 3.03 2.51 2.64 2.83 2.51 2.81 2.71 2.60 2.48 2.13 2.55 2.19 2.57 2.31 2.57
F 2.33 2.41 2.34 N/A N/A N/A N/A N/A N/A 2.69 N/A N/A 2.54 2.48 N/A 2.46
S 2.61 2.44 2.55 2.22 2.61 2.52 2.71 2.31 2.62 2.48 2.61 2.31 2.53 2.23 2.13 2.46

Table 2: Comparison of prediction accuracy while combining all data sources and using MFN regression.

Fusion
Level

AR BO CL CR CO EC GF GT HN MX NI PA PY PE SV All

Model 3.12 3.22 3.03 2.88 2.98 3.13 2.87 2.99 2.87 3.00 2.77 2.82 2.81 2.92 2.87 2.95
Data 3.01 2.97 3.13 2.87 2.86 3.04 2.91 2.88 2.72 2.89 2.70 2.60 2.88 2.81 2.92 2.88

Table 3: Comparison of prediction accuracy while using model level fusion on MFN regressors and employing PAHO stabilization.

Correction
Method

AR BO CL CR CO EC GF GT HN MX NI PA PY PE SV All

None 3.12 3.22 3.03 2.88 2.98 3.13 2.87 2.99 2.87 3.00 2.77 2.82 2.81 2.92 2.87 2.95
Weeks
Ahead

3.15 3.24 3.04 2.87 2.97 3.17 2.87 2.99 2.88 3.05 2.77 2.91 3.02 2.91 2.88 2.98

Num.
samples

3.20 3.24 3.03 2.88 2.96 3.12 2.87 3.01 2.89 3.12 2.78 2.92 3.04 2.91 2.87 2.99

Combined 3.21 3.24 3.05 2.89 2.96 3.19 2.88 3.00 2.89 3.13 2.77 2.93 3.08 2.92 2.88 3.00

Table 4: Discovering importance of sources in Model level fusion on MFN regressors by ablating one source at a time.

Sources AR BO CL CR CO EC GF GT HN MX NI PA PY PE SV All

All 3.21 3.24 3.05 2.89 2.96 3.19 2.87 3.00 2.89 3.13 2.77 2.93 3.08 2.92 2.88 3.00
w/o W 2.91 2.99 2.77 2.71 2.61 2.59 2.66 2.69 2.49 2.78 2.62 2.87 2.60 2.43 2.67 2.69
w/o H 3.04 2.85 2.89 2.56 2.81 2.77 2.61 2.75 2.75 2.82 2.57 2.75 2.51 2.87 2.71 2.75
w/o T 2.92 3.14 2.95 2.61 2.72 2.81 2.88 2.79 2.61 2.93 2.74 2.63 2.79 2.74 2.81 2.80
w/o S 3.19 3.11 2.92 2.64 2.69 2.70 2.89 2.88 2.78 3.07 2.75 2.91 2.80 2.71 2.86 2.86
w/o F 3.20 3.12 2.88 2.89 2.96 3.19 2.87 3.00 2.83 3.02 2.77 2.93 2.98 2.88 2.88 2.96

For 8 of the 15 countries, model level fusion works
appreciably better than data level fusion, while the
reverse trend is seen for 4 other countries. This
showcases the importance of considering both kinds of
fusion depending on the country of interest.
How effective are we at forecasting a moving
PAHO target? As shown in Table 3, our corrected
estimates using both the number of samples and the
weeks ahead from the upload date are generally better.
It is instructive to note that our correction strategy
is able to increase the overall accuracy only by a
score of approximately 0.05 over all the countries, for
some countries such as Mexico and Argentina (for
which the data update is typically noisy) we obtain a
substantial improvement of scores. This suggests that
the correction strategy may be selectively applied when
forecasting for certain countries.
How do physical vs social indicators fare against
each other? From Table 1, we see that the data source
with the best single accuracy happens to be the physical
indicator source, i.e., weather data. However, Table 4
conveys a mixed story. Here we conduct an ablation test,

wherein we remove one data source at a time from our
model level MFN fusion framework and contrast accu-
racies. While removing the weather data degrades the
accuracy score the most, removing the social indicators
also degrades the score to varying degrees. Thus we
posit that it is important to consider both the physical
and social indicators to get a refined signal about the
prevalent ILI incidence in the population.
How relevant is restaurant reservation data to
forecasting ILI? All the results thus far do not con-
sider the OpenTable reservation data, since this source
is available only for Mexico (among the countries stud-
ied here). We considered table availability for different
time ranges and compared performance using our MFN
model. As Table 5 demonstrates, we obtain the best
performance when considering both lunch and dinner
reservation data. Nevertheless, we have observed that
including this source as part of the ensemble decreases
the overall accuracy by 0.01 over the uncorrected ILI
case count data. Thus it is our opinion that although
the reservation data could exhibit some signals about
prevalent ILI conditions, it is also a surrogate for non-



health conditions (e.g., social unrest), which must be
factored out to make the data source more useful.

Finally, we present Figure 4 where we compare
for each country the accuracies of prediction from the
best individual source, with those from both data level
and model level fusion of the different sources and the
the model level fusion of MF regressors applied on the
corrected PAHO estimates rather than the raw ones.
As can be seen, we progressively increase our accuracies
with the corrected PAHO estimates providing the final
increase in predictive power to our model level fusion
framework.

8 Conclusions and Further Work

To forecast ILI over a range of Latin American coun-
tries, we have explored a gamut of options pertaining
to data sources, fusion possibilities, and corrections to
track a moving target. Our results demonstrate that
there are significant opportunities to improve forecast-
ing performance and selective superiorities among data
sources that can be leveraged. Our future work focuses
on reconciling the phenomenological models developed
here with true epidemiological models to that we can
develop not just near-term forecasts as done here but
also identify long-range characteristics of the epidemic
as it unfolds. We also aim to explore the inter-country
characteristics of ILI profiles in future.
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