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ABSTRACT
Influenza-like-illness (ILI) is among of the most common dis-
eases worldwide, and reliable forecasting of the same can
have significant public health benefits. Recently, new forms
of disease surveillance based upon digital data sources have
been proposed and are continuing to attract attention over
traditional surveillance methods. In this paper, we focus
on short-term ILI case count prediction and develop a dy-
namic Poisson autoregressive model with exogenous inputs
variables (DPARX) for flu forecasting. In this model, we al-
low the autoregressive model to change over time. In order
to control the variation in the model, we construct a model
similarity graph to specify the relationship between pairs of
models at two time points and embed prior knowledge in
terms of the structure of the graph. We formulate ILI case
count forecasting as a convex optimization problem, whose
objective balances the autoregressive loss and the model sim-
ilarity regularization induced by the structure of the similar-
ity graph. We then propose an efficient algorithm to solve
this problem by block coordinate descent. We apply our
model and the corresponding learning method on historical
ILI records for 15 countries around the world using a va-
riety of syndromic surveillance data sources. Our approach
provides consistently better forecasting results than state-of-
the-art models available for short-term ILI case count fore-
casting.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data Mining
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1. INTRODUCTION
Forecasting influenza-like-illness (ILI) case counts has been

of great interest to epidemiologists for decades. Seasonal in-
fluenza regularly affects the global population and improve-
ments in forecasting capability can directly translate into
tangible measures of public health.

Traditionally, surveillance reports have been used as ref-
erence data and epidemiologists aim to predict several char-
acteristics about ILI from such reports. Such characteris-
tics of interest can be broadly classified into: (a) seasonal
characteristics and (b) short-term characteristics. Seasonal
characteristics are concerned with the overall shape of ILI
counts for the particular season. Such methods are gener-
ally trained by assigning greater importance to statistics of
the ILI curve such as peak value and the peak size. Con-
versely, short-term characteristics are concerned with accu-
rately predicting the next few data points in absolute value
rather than aiming for an overall fit for the season. In this
paper we are motivated by the second problem, i.e. the
short-term forecasting challenge (but we also evaluate our
methods w.r.t. seasonal characteristics).

There are several challenges to ILI case count forecasting,
one of the most important being the fact that surveillance
reports are often delayed by a number of weeks and there-
fore estimating the current on-ground scenario is a crucial
problem. The case count estimates for a given week can
be delayed anywhere from 1 week to 4 weeks, depending on
the quality of the surveillance apparatus in a given country.
Thus in this paper we aim to provide reliable short-term
forecasts from the last available surveillance data such that
we can estimate the on-ground case counts.

In traditional epidemiology, several models such as SEIR
and SIRS [12], have been proposed to model the temporal
profile of infectious diseases. In modern computational epi-
demiology, more advanced methods have been used. One
of the currently popular methods is to fit prediction mod-
els by matching observational data against a large library
of simulated curves [4, 13, 21]. The curve simulations are
generated by using different epidemiological parameters and
assumptions. Sometimes network-based models are used to
generate the curves [2]. Partially observed influenza counts



for a particular year can then be matched to a library of
curves to produce the best set of predictions [13]. Closely
related to such curve matching methods are filtering-based
methods that dynamically fit epidemic models onto observed
data by letting the base epidemic parameters vary over time.
Yang et al. [22] provide an excellent survey of filtering-based
methods used for influenza forecasting and also present com-
parative analysis of such methods.

Concurrently, there has been a lot of interest in using in-
dicator data sources to predict seasonal influenza. In [8],
Ginsberg et al. presented a method of estimating weekly in-
fluenza counts based on search query volumes (Google Flu
Trend). Following this seminal work, researchers have inves-
tigated a wide-variety of data sources such as Wikipedia [9],
Twitter [5, 10, 16], and online restaurant reservations [14].
Weather has been found to be a significant indicator of sea-
sonal influenza [17, 18, 19, 20]. In [5], different indicator
sources are contrasted to understand their relative influence
on short-term forecasting quality.

As rich and varied as the above approaches are, most
approaches in the literature aim to use the same model
to predict for the entire influenza season. This is not en-
tirely desirable as ‘in-season’ ILI characteristics may vary
significantly from the ‘out-of-season’ characteristics (see Sec-
tion 3.5). While researchers appreciate the need for dynamic
models (e.g., [5]), constraints on temporal consistency are
not explicitly imposed in current models. Thus in this paper
we aim to propose a general purpose time series prediction
model allowing external factors from indicator sources to
produce robust short-term forecasts in a consistent manner.

A popular model for analyzing time series data is the
autoregressive exogenous (ARX) model [3, 11]. The ARX
model has also been adopted by Paul et al. [16] to predict
ILI case counts by using Twitter and Google Flu Trends
(GFT) as the indicator sources. However, the underlying
static autoregressive model may not be suitable for flu trend
forecasting, as the activity of the disease and the human liv-
ing environment evolve over time. Ohlsson et al. [15] have
designed a more flexible ARX model for time-varying sys-
tems based on model segmentation. It allows the weight
of the autoregressive model to be temporally piecewise con-
stant. In this paper, we further relax this requirement. We
build separate models for each time point, but we constrain
the models to share common characteristics. To capture
such characteristics, we build a graph over models at differ-
ent time points and embed the prior knowledge on model
similarity in terms of the structure of the graph. Then we
formulate the dynamic ARX model learning problem as a
convex optimization problem, whose objective balances the
autoregressive loss and the model similarity regularization
induced by the graph structure. In this optimization prob-
lem, the variables have a natural block structure. Thus we
apply a block coordinate descent method to solve this prob-
lem. We further extend our dynamic ARX modeling to the
Poisson regression model for a better fitting of the count
data [3, 6], as is relevant for ILI case counts forecasting.
We perform extensive experimental studies to evaluate the
effectiveness of the proposed model and the corresponding
learning algorithm. We use various real world datasets in
the experiments, including different types of indicator data
sources from 15 countries around the world. Our experi-
mental studies illustrate that the dynamic modeling of the
linear Poisson autoregressive model captures well the under-

lying progression of disease counts. Further, our results also
show that our proposed method outperforms state-of-the-art
ILI case counts forecast methods.

Our main contributions are summarized as follows:

• We propose a new dynamic ARX model for the task of
ILI case count forecasting. This approach incorporates
a linear Poisson regression model with non-negativity
constraints into an ARX model, ideal for case counts
modeling.

• Prior domain knowledge can be encoded as structural
relationships among different time points in a graph,
which is embedded into the objective as a regulariza-
tion term while still ensuring that the optimization
problem is convex.

• We evaluate the proposed method using various real
world datasets, including different types of indicator
data sources from the USA and 14 Latin American
countries.

2. CASE COUNT FORECASTING
Let us denote y = [y1, y2 · · · , yN ] as the known total

weekly ILI case counts for a particular country under con-
sideration. yt ∈ N denotes the case count for time point t
and N denotes the time point till which the ILI case count
is known. Let us denote the available surrogate information
for the same country by X =

[
xT1 ,x

T
2 , · · · ,xTS

]
, where S

is the time point till which the surrogate information (i.e.,
indicator values) is available and xt ∈ Rm denotes the sur-
rogate attributes for time point t. We aim to predict the
number of ILI case counts at time point t > T .

2.1 ARX Model for Time Series Prediction
The ILI case count prediction is a time series modeling

problem and thus autoregressive models are natural candi-
dates for such problem. The order p AR(p) model can be
written as

yt =

p∑
i=1

αiyt−i + εt + c,

where the prediction is a linear combination of the target
values at previous p time points with weight α1, · · · , αp. εt
is a small random noise and c is a constant. However, AR
models are only dependent on target signal itself and can be
extended to include the effects of exogenous input variables
to get ARX models as follows:

yt =

p∑
i=1

αiyt−i +

b∑
i=0

βTi xt−d−i + εt + c,

where β1, . . . ,βb are the weight parameters of the exogenous
input variables xt with βi ∈ Rm, and d is the time delay
between the input features and the output target.

The ARX model can be written in a compact form by
rearraging the features as:

zt = [xt−d, · · · ,xt−d−b, yt−1, · · · , yt−p, 1]
yt = wzTt + εt

where w = [βt−d, · · · ,βt−d−b, αt−1, · · · , αt−p, c]. This is a
standard linear model, which can be fitted by minimizing



the least squares loss as

min
w

∑
t

l(zt, yt) =
∑
t

(yt −wzTt )2,

where l(zt, yt) is a general loss function, and here we use the
least squares approximation residual as the loss function.

2.2 Dynamic Model
The standard ARX model assumes that the model pa-

rameters do not change with time. However, in the case
count forecasting problem, the behavior and the spread of
the flu can vary over time, especially as a result of human
interventions. Thus the prediction model should adapt in a
similar manner. Ohlsson et al. [15] relaxed the linear model
to piecewise constant linear model in ARX but the piece-
wise constant model still requires the nearby model to be
the same, and thus a limitation for ILI case count forecast-
ing. In this paper, we further relax this requirement by
building a separate model for each time point. We assume
that each model is similar to a group of others and formulate
a dynamic model as:

yt =

p∑
i=1

α
(t)
i yt−i +

b∑
i=0

(β
(t)
i )Txt−d−i + εt + c(t).

This dynamic autoregressive model, with time dependent
parameters, can be compactly written as:

yt = wtz
T
t + εt,

where wt =
[
β

(t)
t−d, · · · ,β

(t)
t−d−b, α

(t)
t−1, · · · , α

(t)
t−p, c

(t)
]

are the

time-dependent weights.
Without any constraints, the dynamic ARX model has too

many parameters to be learnt effectively. We constrain this
complexity by enforcing that, even in the presence of model
changes, the models at different time points should still share
some common structure. We model our prior knowledge of
such model similarity as a graph structure, which is shown
in Figure 1. Given a series of models within a period of
time, we define a graph G = {V,E}, where V is the node
set composed of all models {wt} at different time points
and E is the edge set, which represents the similarity of the
corresponding pair of nodes. For simplicity, we assign binary
values of Sij = {0, 1} for each edge. Sij = 1 indicates that
the corresponding two nodes wi and wj should be similar
to each other, otherwise Sij = 0 to denote that there are no
constraint between the corresponding nodes.

There are three types of useful graph structure for ILI case
count forecasting (see Figure 2) which can be described as:
• Fully connected graph: All elements in S are 1, except
the diagonal elements. This is similar to the standard ARX
model. However, it allows a tolerance of model variance.
• Nearest neighbor graph: All nearby models have an edge
with element 1 in a small neighborhood area, which mean
St,t+k = 1, ∀k ≤ K. This is similar to piecewise constant
model or fused lasso problem if we choose K = 1.
• Seasonal nearest neighbor graph: All nearby models in the
same season have edge connections as 1 and the models at
similar time points from different seasons have edge connec-
tions as 1. This is more useful for flu forecasting, where the
trends are highly periodic.

Figure 1: Modeling similarity as graph structures.
In this graph, there are three consecutive years
(rows). Nodes in each row denote the models in
each year, which are ordered in time. The nodes
from different years are aligned in the same order.
For ILI forecasting, the last node should be simi-
lar to the nearby nodes in the same year as well as
nodes in previous years it is connected to.
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Figure 2: The graph structure for three different
types of prior knowledge (fully connected, nearest
neighbors, seasonal nearest neighbors).

Using Euclidean distance as a similarity measure, we ob-
tain the following formulation of the problem:

min
W

l(zt, yt) + η
∑
i,j

Sij ‖wi −wj‖22 + γ ‖W‖2F (1)

where, W =
[
wT

1 , · · · ,wT
N

]
. In the objective function, the

second term constrains the model similarity and the third
term constrains the complexity of the models.
Reformulating the Frobenius norm term as

∑
i 1 ‖wi − 0‖22,

we find that it to be similar to the other regularization term.
Adding a null model node, w0 = 0, to the graph, and as-
suming it to connected to all the other nodes with S0i = 1
∀i > 0, the regluarization term can be simplified as:∑

i,j=0,...,N

Sij ‖wi −wj‖22 (2)

A simple form of the optimization problem can be then
stated as:

min
W

l(zt, yt) + η
∑
i,j

Sij ‖wi −wj‖22
where, w0 = 0

(3)

2.3 Dynamic ARX Model
Using the least squares loss in (3), the objective function

can be given as:

N∑
i=1

(
yi −wiz

T
i

)2
+ η

∑
i,j

Sij ‖wi −wj‖22 . (4)

The overall problem is then a convex optimization prob-
lem. We apply the block coordinate descent method (see



Algorithm 1) to optimize (4), as the weight w naturally
preserves a block structure. In block coordinate descent, we
iteratively optimize until converegence each wi keeping all
other blocks fixed. In each step, we solve a simple regression
problem

min
wi

(
yi −wiz

T
i

)2
+
∑N
t6=i
(
yt −wtz

T
t

)2
+η
∑
j Sij ‖wi −wj‖22 + η

∑
t6=i,j Stj ‖wt −wj‖22 .

(5)

It can be simplified as

min
wi

(
yi −wiz

T
i

)2
+ η

∑
j∈Bi

‖wi −wj‖22 ,

where Bi is the set of nodes connected with node i. The
gradient of this objective function is:

2
(
wiz

T
i − yi

)
zi + 2η

∑
j∈Bi

(wi −wj) .

Under first order optimality condition, this problem has a
closed-form solution as

wi =
(
zTi zi + ηKiI

)−1

yizTi + η
∑
j∈Bi

wj

 ,

where Ki is the number of the connected nodes for node i.

Algorithm 1 Dynamic Autoregressive Model with Exoge-
nous Variables (DARX)

input data source X, historical target y.
1: Build the samples Z, initial weight W(0)

2: repeat
3: for i = 1, · · · , N do
4: Solve sub-problem (5) by(

zTi zi + ηKiI
)−1

(
yiz

T
i + η

∑
j∈Bi wj

)
5: end for
6: until Terminated

output Regression weight W.

2.4 Dynamic Poisson ARX for ILI Forecast-
ing

Since ILI case count forecasting aims to predict the num-
ber of the infected people at different time points, it is natu-
ral to apply a Poisson regression model. We thus model the
probability of the value of the response variable as a Poisson
distribution:

Pr (y) =
λye−λ

y!
,

where λ is the expected count or the mean parameter and y
is the count of events.

Given the case counts at different time points as {y1, · · · , yN}
and the associated input features as {z1, · · · , zN}, the like-
lihood and hence the log-likelihood can be expressed as:

Pr ({yi}|{zi}) =
∏N
i=1

λyie−λ

yi!

⇒ log (Pr ({yi}|{zi})) =
∑N
i=1 (yi log(λ)− λ− log(yi!))

Poisson regression model is a generalized linear model with
the logarithm as the cannonical link function:

log (E[y|z]) = log(λ) = wzT .

Thus λ = e(zw
T ), and the log likelihood can be written as

N∑
i=1

(
yi(wzTi )− e(wzTi ) − log(y!)

)
.

The weight W is learnt by maximizing the log likelihood:

max
w

N∑
i=1

(
yi(wzTi )− e(wzTi )

)
.

Alternately, we can use the identity link function to get
λ = (zwT ) , which is called linear Poisson regression [6] and
has more computational benefits. Under the identity link
function, the negative log likelihood of the training samples
can be written as

l(X,y,W) = −
N∑
i=1

(
yi log(wzTi )− (wzTi )− log(yi!)

)
.

2.5 Block Coordinate Descent Optimization
Applying the linear Poisson regression loss function de-

scribed above in (3), we obtain a convex optimization prob-
lem as:

min
W

∑
i

(
wiz

T
i − yi log(wiz

T
i )
)

+ η
∑
i,j Sij ‖wi −wj‖22

s.t. wiz
T
i ≥ 0, ∀i.

The non-negative constraints are naturally satisfied as wiz
T
i

is in the logarithm form in the objective.
Similar to the least squares loss case, we apply block co-

ordinate descent to solve the above formulation (see Algo-
rithm 2). In block coordinate descent, we iteratively opti-
mize one block of variables with all other blocks fixed. In
each step, the objective function is decomposed into(

wiz
T
i − yi log(wiz

T
i )
)

+
∑N
t6=i
(
wtz

T
t − yt log(wtz

T
t )
)

+η
∑
j Sij ‖wi −wj‖22 + η

∑
t6=i,j Stj ‖wt −wj‖22 .

The minimization of the objective function in each step is a
constrained regression problem:

min
wi

(
wiz

T
i − yi log(wiz

T
i )
)

+ η
∑
j Sij ‖wi −wj‖22

s.t. wiz
T
i ≥ 0.

(6)

This sub-problem is a convex optimization problem. How-
ever, it has no closed-form solution. We apply the projection
gradient method to solve it iteratively. In each iteration, we
first apply the Newton-Raphson method on the objective
function and then project the obtained solution to the feasi-
ble set. For the Newton-Raphson gradient step, the gradient
and the Hessian of the objective (6) can be given as:

gi =
(

1− yi
wiz

T
i

)
zi + 2η

∑
j Sij (wi −wj)

Hi = yi

(wzTi )2
(
zTi zi

)
+ 2η

∑
j Sij

(7)

Thus, the update rule for each wi is

wi ← wi −H−1
i gi.

After this update, we project the obtained weight to the
feasible set by

wi ← wi −
wiz

T
i

zizTi
zi.



Algorithm 2 Dynamic Poisson Autoregressive Model with
Exogenous Variables (DPARX)

input data source X, historical target y.
1: Build the samples Z, initial weight W(0)

2: repeat
3: for i = 1, · · · , N do
4: Solve sub-problem (6) by Newton-Raphson method
5: repeat
6: Calculate the gradient gi and Hessian matrix Hi

7: wi ← wi −H−1
i gi

8: Project the solution to the feasible set

wi ← wi − wiz
T
i

ziz
T
i

zTi

9: until Terminated
10: end for
11: until Terminated
output Regression weight W.

2.6 Multi-step Forecasting
Reports of historical ILI counts are in general lagged by

several weeks and revised for several weeks after they are
first reported. Thus, in the practical case, we usually need
to forecast the target several steps ahead. In s-step forward
forecasting, we are only given the target signal till s weeks
ago. For example, we have the training data set {xi}N+s

1 ,
{yi}N1 , and we are required to predict the target signal at
time T+s. In this case, we directly model the s-step forward
forecast problem as regression problem as:

yt = wtz
T
t + εt

where, zt = [xt−d, · · · ,xt−d−b, yt−s, · · · , yt−s−p+1, 1]

We can still apply the dynamic Poisson ARX model and
the corresponding learning procedure to the general s-step
ahead forecast. In the forecasting phase, we apply the most
recent model for predicting the target at the upcoming time
point.

3. EXPERIMENTS
In our experiments, we compare our proposed method

with several state-of-the-art ILI case count forecasting meth-
ods on a series of datasets for multi-step short-term forecast-
ing. The following algorithms are used in the evaluation:
ARX, matrix factorization with nearest neighbor regression
(MFN) [5], segmentation of ARX model (SARX) [15], our
dynamic ARX model (DARX), and finally the dynamic Pois-
son ARX model (DPARX).

3.1 Datasets
In this section, we give a summary of the data sources

used. Table 1 lists these sources and their characteristics.
In general for all the sources we used data for the period Jan
1, 2010 to Oct 8, 2014 as available latest on Jan 5, 2015.

3.1.1 Reference Source: PAHO/CDC
In this paper, we focus on United States (US) and 14

Latin American (LA) countries including Argentina (AR),
Bolivia (BO), Chile (CL), Colombia (CO), Costa Rica (CR),
Ecuador (EC), Guatemala (GT), Honduras (HN), Mexico
(MX), Nicaragua (NI), Panama (PA), Peru (PE), Paraguay
(PY) and, El Salvador (SV). For each country, we collected
the weekly national counts of ILI infections as estimated

by the lab-based surveillance system present in the coun-
try (PAHO for LA and CDC for US). As discussed in [5],
in general, these weekly estimates are lagged and regularly
updated. However for this paper we focus on presenting a
general purpose regression model allowing external variables
and analyze the performance measures over the entire ILI
season. As such, we considered the ILI count as available
latest on Jan 5, 2015 and used a relatively stable portion
of the ILI count spanning the period Jan 1, 2010 to Oct 8,
2014 for our analysis [5]. We considered the first 50 weeks
as our fixed set and progressively used the remaining weeks
to analyze the prediction accuracies.

3.1.2 Physical Indicators
Weather, specifically absolute humidity, has been found

to be a strong indicator of ILI counts [18, 17, 19, 5]. In this
paper, we used 6 hourly readings of 5 weather attributes in-
cluding absolute humidity, relative humidity, precipitation,
specific humidity, and temperature. These readings were
accessed via the Global Data Assimilation System (GDAS)
and downloaded in 1◦ lat/long resolution from http://ladsweb.

nascom.nasa.gov/. Following [5], we used the weather read-
ings for only 4 lat/long pairs around the surveillance centers
for the country under investigation.

3.1.3 Social Indicators
Recent research [5, 9] has shown that there is significant

signal hidden in online media, such as news, about preva-
lent ILI activity. We used Google Flu Trends (GFT), Google
Search Trends (GST) and HealthMap (HM) as the selected
social indicators sources.

GFT: Google Flu Trends (http://google.org/flutrends)
is a tool based on [8] providing weekly estimates of ILI
counts. These estimates are based on search query volumes
as detected by Google. The system was recently updated [7]
to make it more robust to sudden spikes in search activities.
We used national level GFT data for the prespecified period.
GST: As presented in [5], we used our in-house estimates
of ILI related search activity by accessing Google trends
(https://google.com/trends), which provides weekly es-
timates of search query volumes. We used the same 114
keywords as used in [5], constructed via a mix of pseudo-
query expansion and correlation analysis. It is to be noted
that these estimates are usually updated over time and we
used a fixed download, similar to PAHO.
HealthMap: HealthMap (http://healthmap.org) is a global
disease alert system capturing disease related data from over
50,000 electronic sources. We used flu-related news articles
captured in the HealthMap system over the specified period
and enriched the HTML content to create the weekly counts
of 114 keywords for each country at a weekly level.

3.2 Evaluation Measures
Given the ground truth case counts {yt} and its prediction
{ŷt}, the prediction error is measured in the form of

error =
4

N

te∑
t=ts

|yt − ŷt|
max(yt, ŷt, 10)

,

where ts and te indicate the starting and the ending time
point for the predictions. N indicates the number of time
points over the same time period (i.e. N = te − ts + 1).



Table 1: Data source characteristics. Delayed refers to whether the data source is available for a given week
in the same week or later. Revised refers to whether older values can get revised in future updates.

Characteristics Num. Dimensions Delayed? Revised? Temporal Resolution Spatial Resolution

PAHO/CDC 1 Yes Yes Weekly Country
Google Flue Trends (GFT) 1 No Yes Weekly Country
Google Search Trends (GST) 114 No Yes Weekly Country
Weather 5 No No 6 hours → Weekly 4 locations → Country
HealthMap 114 × 3 No No Daily → Weekly Country

0 50 100 150 200
0

1000

2000

3000

 

 

 

 

20 40 60 80 100 120 140 160 180 200 220

20

40

60

80

100

120

140

160

180

200

220

0.01

0.02

0.03

0.04

0.05

0.06

Figure 3: The distance matrix obtained from our
learned DPARX model (bottom figure), associated
with the ground truth ILI case count series (top
figure) on the AR dataset. We can observe the
strong seasonality automatically inferred in the ma-
trix. Each element in the matrix is the Euclidean
distance between a pair of the learned models at
two corresponding time points after training. For
the top figure, the x axis is the index of the weeks;
the y axis is the number of ILI cases. For the bottom
figure, both x and y axes are the index of the time
points. Note that the starting time point (index 0)
for the distance matrix is week 15 of the ILI case
count series.

In the following experiments, we present the prediction ac-
curacy, which is 4 − error, on different countries to show
the performance of different prediction models. A score of 4
thus indicates a perfect forecast.

3.3 Model Similarity
First, we conduct experiments to investigate the model

similarities posited by our proposed algorithm. In this ex-
periment, we calculate the distance between all pairs of mod-
els learned by DPARX during a period of time on the AR
dataset. We present the distance matrix associated with the
ground truth ILI case count series in Figure 3. We see that
the distance matrix has a strong seasonal pattern, which is
consistent with the pattern of the ILI case count series. At
the beginning of each flu season, the model is significantly

different from the rest of the models at other time points.
This result demonstrates that ILI case counts have a strong
periodic pattern and that the dynamic modeling approach
successfully captures this pattern. It also validates the ne-
cessity of conducting this level of modeling for flu forecast-
ing.

In the next experiment, we run our proposed DPARX
method on the US dataset under three different model sim-
ilarity graphs including the fully connected graph, the 3-
nearest neighbor graph and the seasonal 3-nearest neighbor
graph. We then calculate the three corresponding distance
matrices of the learned models, which are shown in Figure 4.
The patterns in the three distance matrices are very simi-
lar. However, the distances between the pairs of models are
smaller for the fully connected similarity graph. Without
strong prior knowledge, the fully connected similarity graph
is preferred, as during different seasons the target signal may
still be very different. In the following experiments, we will
use the fully connected similarity graph for the regulariza-
tion term.
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Figure 4: Model distance matrices for the US
dataset. The three matrices are derived from
the fully connected similarity graph, the 3-nearest
neighbor similarity graph and the seasonal 3-nearest
neighbor similarity graph, from left to right corre-
spondingly.

3.4 Forecasting Results
In the ILI cast count forecast experiments, we use the data

record from all 15 countries. All the case count data are as-
sociated with several data sources as listed in Table 11. We
start with 50 given time points and test the prediction re-
sult on the remaining time points. We run all the competing
methods in an online manner: the models are re-trained and
updated after the arrival of values at every additional time
point. For the DARX and DPARX models, we use the same
parameter settings: p = 1, b = 15 for GFT and Weather
data sources as these data sources have relatively small di-
mension; p = 1, b = 4 for GST and HealthMap data sources
as these data sources have relatively high dimension. The
ARX model does not provide numerical stable results for
high dimensional data. Thus we present its results on GFT
and Weather data sources with p = 1, b = 15. Likewise,

1The GFT information is provided only for countries AR,
BO, CL, MX, PE, PY and the US.



the training of the SARX model is very time consuming,
especially for high dimensional data. We thus only present
its results using the GFT data source with the same setting
(p = 1 and b = 15). The remaining parameter in our model
is the regularization parameter that controls the variation
of the model. We fix it as η = 1 for the DARX model and
η = 5 for the DPARX model during all experiments. For
MFN algorithm, we follow the same procedure and param-
eter setting as in [5].

We present the results of short-term ILI case count fore-
casting for different countries with both 1-step forecast and
multi-step forecasts with step sizes of 2, 3, and 4. The pre-
diction accuracy on data sources GFT, Weather, GST, and
HealthMap are presented in Tables 2, 3, 4, and 5, corre-
spondingly.

The experiments show that our models yield better predic-
tion accuracy, especially for multi-step forecasting. Multi-
step forecast is a much harder task than 1-step forecast.
The dynamic modeling of ARX provides more flexibility in
handling the uncertainty associated with the target signal.

Table 2: Prediction accuracies for competing algo-
rithms with different forecast steps over different
countries using the GFT input source. GFT data is
not available for other countries.

Step Method AR BO CL MX PE PY US

1

ARX 2.85 2.63 3.18 2.61 2.51 2.82 3.71
MFN 2.33 2.41 2.34 2.69 2.48 2.54 3.73

SARX 3.02 2.42 3.11 2.90 2.81 2.69 3.67
DARX 3.05 2.74 3.12 2.78 2.50 2.65 3.71

DPARX 3.13 2.82 3.18 2.97 2.64 2.81 3.72

2

ARX 2.38 2.22 2.83 1.88 1.90 2.57 3.47
MFN 2.12 2.00 2.13 2.33 2.21 2.19 3.63

SARX 2.75 2.03 2.76 2.64 2.43 2.43 3.64
DARX 2.94 2.68 3.02 2.58 2.38 2.58 3.60

DPARX 2.86 2.70 2.89 2.64 2.52 2.65 3.61

3

ARX 2.11 1.86 2.61 1.28 1.44 2.31 3.19
MFN 1.99 1.87 2.11 2.14 2.10 2.09 3.33

SARX 2.33 1.61 2.46 2.42 2.16 2.23 3.40
DARX 2.66 2.36 2.77 2.37 2.26 2.46 3.41

DPARX 2.58 2.53 2.56 2.45 2.37 2.52 3.42

4

ARX 1.84 1.61 2.39 0.88 1.12 2.22 2.92
MFN 1.85 1.83 2.00 2.05 2.01 1.94 3.15

SARX 2.12 1.41 2.30 2.22 2.02 2.09 3.30
DARX 2.34 2.21 2.52 1.98 2.19 2.22 3.18

DPARX 2.29 2.35 2.32 2.26 2.29 2.40 3.20

3.5 Seasonal Analysis
Thus far we have primarily focused on the near-term fore-

casting capability of the system. In addition to these near-
term forecasts, epidemiologists are often interested in pre-
dictions about seasonal characteristics. Typically, for a com-
plete ILI season, the seasonal quantities of interest are ‘start
week’, ‘peak week’, ‘end week’, ‘peak size’ and ‘season size’.
We present interpretations of these quantities and our meth-
ods for calculating the same2 as follows:

2Our definitions here are motivated by how CDC calculates
the same for the United States.

1. Start week: Within a particular ILI year (may not be
calendar year, e.g., in the USA, the ILI year spans from
Epi Week 40 to Epi Week 39 [1]), ‘start week’ is the
week from which ILI is said to be in season. We define
start week for a ILI year to be the first week where
the ILI count for 3 consecutive past weeks (including
itself) is greater than a pre-defined threshold.

2. Peak week: Within a particular ILI year, the peak
week is the week for which the ILI count is highest for
that ILI year.

3. Peak Size: Peak Size is the ILI count observed on the
peak week.

4. End week: Within a particular ILI year, the end week
is the first week after the peak week such that ILI
counts for 3 consecutive past weeks (including itself) is
lower than a pre-defined threshold. End week signifies
the end of the ILI season and is thus of interest to
epidemiologists.

5. Season Size: Season size is used as a proxy for the
size of the epidemic. It is calculated by summing up
the total ILI count from the start to the end week.

Typically, the relevant thresholds are estimated by surveil-
lance agencies based on expert knowledge. However, from
our experience we have found that using 40% quantile for a
year gives a reasonable threshold.

In this paper we have not trained the models to predict
the aforementioned metrics. However, we can construct ILI
prediction curves for each ‘step-ahead’, i.e., 1-step ILI pre-
diction curve, 2-step ILI prediction curve and so on. From
these prediction curves we can then calculate the season-
characteristics and compare them against those calculated
from the observed PAHO (or CDC) ILI counts.

We compare the predicted and observed seasonal charac-
teristics, for the last ILI year in our set for each country, in
Table 63. As Table 6 shows, the proposed algorithms work
well for a number of countries. In general DPARX performs
better in terms of the overall prediction characteristics. This
is consistent with our results for near-term forecasts. For
seasonal characteristics, Weather and GFT seem to be the
most important sources for prediction. We also present the
predicted and real curves for Mexico for the ILI season 2013
in Figure 5 based on 1-step ahead predictions. Excepting
GST and Healthmap data for some of the state-of-the-arts,
all the curves match up closely to the observed ILI curve.

4. CONCLUSION
This paper concerns a practical short-term ILI case count

forecasting problem based on multiple digital data sources.
One of the main contributions of the proposed model is that
the underlying autoregressive model is allowed to change
over time. In order to control the variation of the model, we
build a model similarity graph to indicate the relationship
between each pair of models at two different time points and
embed the prior knowledge as the structure of the graph.
The experiments demonstrate that our proposed algorithm

3We only show the most important algorithms over the most
relevant sources. For full table see http://www.yelab.net/
publications/ILI-KDD15
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Figure 5: Comparison of seasonal characteristics for
Mexico using different algorithms for one-step ahead
prediction. Blue vertical dashed lines indicate the
actual start and end of the season. ILI season con-
sidered: 2013.

provides consistently better forecasting results than state-of-
the-art time series models used for short-term ILI case count
forecasting. We also observed that the dynamic model suc-
cessfully captures the seasonal pattern of flu activity. In
our future work, we plan to extend our proposed model
to the multi-source learning case, and learn the prediction
model with different data sources simultaneously. We expect
the forecasting performance to be significantly improved by
properly fusing the data sources and the model. At the end,
we would like to mention that though our paper focuses
on predicting ILI case counts, the proposed dynamic ARX
model is a general time series modeling technique and it is
broadly applicable to a wider range of time series prediction
problems.
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Table 3: Prediction accuracies for competing algorithms with different forecast steps over different countries
using the weather data source.

Step Method AR BO CL CO CR EC GT HN MX NI PA PE PY SV US

1

ARX 2.94 2.51 3.10 2.90 2.21 2.81 2.83 2.96 2.25 2.18 2.78 2.51 2.84 2.83 3.51
MFN 2.99 3.01 2.88 2.53 2.78 2.81 2.77 2.83 2.61 2.70 2.56 2.82 2.66 2.79 3.81

DARX 3.09 2.84 3.17 2.84 2.57 2.94 2.83 2.89 2.91 2.77 2.72 2.67 2.79 2.72 3.71
DPARX 2.98 2.84 3.07 3.01 2.70 2.97 2.87 2.93 2.84 2.86 2.82 2.78 2.86 2.77 3.72

2

ARX 2.56 2.05 2.63 2.71 1.61 2.56 2.63 2.76 1.15 1.36 2.56 2.05 2.62 2.64 3.21
MFN 2.86 2.89 2.81 2.49 2.71 2.67 2.72 2.41 2.55 2.31 2.50 2.59 2.71 2.30 3.75

DARX 2.98 2.69 3.00 2.69 2.63 2.79 2.72 2.81 2.66 2.28 2.55 2.49 2.68 2.66 3.60
DPARX 2.67 2.73 2.86 2.83 2.66 2.79 2.78 2.78 2.62 2.49 2.71 2.63 2.64 2.68 3.61

3

ARX 2.25 1.65 2.21 2.50 1.06 2.30 2.39 2.59 0.60 0.94 2.42 1.72 2.39 2.46 2.92
MFN 2.49 2.38 2.41 2.33 2.45 2.31 2.32 2.10 2.21 2.11 2.19 2.22 2.40 2.08 3.64

DARX 2.68 2.32 2.68 2.57 2.52 2.72 2.50 2.65 2.47 2.00 2.52 2.32 2.54 2.53 3.41
DPARX 2.33 2.44 2.63 2.70 2.58 2.66 2.59 2.61 2.36 2.31 2.75 2.44 2.51 2.55 3.42

4

ARX 1.98 1.37 1.73 2.31 0.72 2.07 2.22 2.41 0.39 0.83 2.21 1.46 2.21 2.30 2.56
MFN 2.10 2.13 2.15 2.04 2.25 2.11 2.22 1.94 1.99 1.87 2.01 1.86 2.10 1.77 3.54

DARX 2.42 2.12 2.39 2.49 2.34 2.52 2.42 2.51 2.17 1.74 2.38 2.27 2.30 2.42 3.18
DPARX 2.10 2.23 2.32 2.64 2.38 2.52 2.55 2.45 2.06 2.15 2.72 2.38 2.27 2.53 3.20

Table 4: Prediction accuracies for competing algorithms with different forecast steps over different countries
using the GST data source.

Step Dataset AR BO CL CO CR EC GT HN MX NI PA PE PY SV

1
MFN 2.61 2.44 2.55 2.22 2.61 2.52 2.31 2.62 2.48 2.61 2.31 2.23 2.53 2.13

DARX 2.99 2.65 3.09 2.74 2.41 2.86 2.72 2.83 2.82 2.84 2.59 2.56 2.75 2.63
DPARX 3.07 2.74 3.15 2.85 2.72 2.80 2.51 2.80 2.96 2.77 2.59 2.66 2.82 2.61

2
MFN 2.50 2.33 2.31 2.10 2.44 2.29 2.11 2.43 2.37 2.39 2.20 2.01 2.27 2.00

DARX 2.83 2.54 2.94 2.57 2.53 2.69 2.58 2.72 2.59 2.40 2.35 2.40 2.54 2.51
DPARX 2.78 2.59 2.86 2.67 2.63 2.67 2.35 2.71 2.60 2.48 2.43 2.53 2.57 2.59

3
MFN 2.33 2.10 2.16 1.99 2.21 2.03 1.99 2.14 2.20 2.14 2.02 1.91 2.13 1.92

DARX 2.51 2.07 2.69 2.45 2.36 2.47 2.41 2.54 2.34 2.06 2.48 2.10 2.49 2.44
DPARX 2.46 2.41 2.53 2.56 2.48 2.51 2.26 2.58 2.38 2.30 2.41 2.34 2.49 2.51

4
MFN 1.99 2.00 2.01 1.82 1.97 1.88 1.92 1.93 1.81 1.77 1.79 1.70 1.82 1.71

DARX 2.16 1.91 2.36 2.24 2.20 2.17 2.28 2.40 1.80 1.86 2.40 2.06 2.23 2.36
DPARX 2.17 2.21 2.29 2.46 2.35 2.33 2.14 2.46 2.10 2.13 2.33 2.21 2.30 2.44

Table 5: Prediction accuracies for competing algorithms with different forecast steps over different countries
using the HealthMap data source.

Step Dataset AR BO CL CO CR EC GT HN MX NI PA PE PY SV US

1
MFN 2.81 3.13 2.63 2.58 2.91 2.77 2.63 2.73 2.50 2.61 2.54 2.69 2.51 2.61 3.78

DARX 3.00 2.69 3.11 2.79 2.44 2.89 2.75 2.91 2.85 2.86 2.60 2.65 2.75 2.64 3.71
DPARX 3.07 2.74 3.15 2.84 2.69 2.83 2.58 2.82 2.95 2.79 2.59 2.70 2.83 2.62 3.72

2
MFN 2.71 2.91 2.30 2.21 2.77 2.49 2.40 2.38 2.44 2.36 2.15 2.33 2.22 2.33 3.64

DARX 2.86 2.60 3.01 2.62 2.54 2.74 2.64 2.77 2.66 2.47 2.37 2.47 2.53 2.58 3.60
DPARX 2.78 2.60 2.88 2.67 2.62 2.71 2.44 2.72 2.60 2.50 2.45 2.58 2.58 2.60 3.61

3
MFN 2.44 2.30 2.42 2.07 2.31 2.14 2.28 2.01 2.19 2.12 1.99 2.00 1.97 1.95 3.35

DARX 2.58 2.18 2.78 2.49 2.35 2.63 2.51 2.62 2.48 2.15 2.49 2.33 2.48 2.51 3.41
DPARX 2.46 2.42 2.55 2.56 2.47 2.58 2.36 2.59 2.38 2.31 2.45 2.37 2.49 2.50 3.42

4
MFN 1.93 1.99 2.20 1.88 2.00 1.95 2.15 1.95 1.89 1.85 1.72 1.78 1.91 1.81 3.13

DARX 2.28 2.02 2.46 2.39 2.19 2.37 2.39 2.45 2.22 1.97 2.45 2.26 2.20 2.42 3.18
DPARX 2.17 2.21 2.30 2.44 2.34 2.42 2.25 2.47 2.12 2.14 2.37 2.25 2.30 2.47 3.21



Table 6: Comparison of seasonal characteristics extracted from predictions. For week matches such as
start week, peak week and end week, we apply a lenient interpretation wherein any deviation less that 2 is
considered to be true. Similarly, for value scores, an accuracy score of at least 3.0 (out of 4.0) was used to
denote a correct prediction. Bold highlighted rows indicate forecasts where all the metrics were matched
correctly.

Country, Step, Model
Start week Peak Week End Week Peak Size Season Size

act pred res act pred res act pred res act pred res act pred res

PE, 1, GFT-DPARX 3 3 True 21 22 True 36 37 True 308 259 True 2139 1712 True
PE, 1, Weather-DPARX 3 3 True 21 22 True 36 37 True 308 225 False 2139 1767 True
PE, 1, GFT-DARX 3 3 True 21 21 True 36 37 True 308 1028 False 2139 2922 False
PE, 1, Weather-DARX 3 3 True 21 21 True 36 37 True 308 733 False 2139 2579 True
PE, 2, GFT-DPARX 3 4 True 21 23 True 36 38 True 308 292 True 2139 1760 True
PE, 2, Weather-DPARX 3 4 True 21 23 True 36 38 True 308 229 False 2139 1744 True
PE, 2, GFT-DARX 3 4 True 21 23 True 36 36 True 308 1760 False 2139 4702 False
PE, 2, Weather-DARX 3 5 True 21 23 True 36 38 True 308 1228 False 2139 3411 False
PE, 3, GFT-DPARX 3 5 True 21 24 False 36 39 False 308 294 True 2139 1804 True
PE, 3, Weather-DPARX 3 5 True 21 24 False 36 39 False 308 229 False 2139 1731 True
PE, 3, GFT-DARX 3 5 True 21 24 False 36 37 True 308 2517 False 2139 7136 False
PE, 3, Weather-DARX 3 6 False 21 24 False 36 38 True 308 1276 False 2139 4101 False
PE, 4, GFT-DPARX 3 6 False 21 25 False 36 40 False 308 295 True 2139 1846 True
PE, 4, Weather-DPARX 3 6 False 21 25 False 36 39 False 308 227 False 2139 1721 True
PE, 4, GFT-DARX 3 6 False 21 25 False 36 37 True 308 3323 False 2139 9698 False
PE, 4, Weather-DARX 3 7 False 21 25 False 36 38 True 308 1136 False 2139 4658 False

BO, 1, GFT-DPARX 11 3 False 27 28 True 50 51 True 46 30 False 804 580 False
BO, 1, Weather-DPARX 11 13 True 27 28 True 50 51 True 46 44 True 804 752 True
BO, 1, GFT-DARX 11 3 False 27 15 False 50 21 False 46 57 True 804 217 False
BO, 1, Weather-DARX 11 3 False 27 28 True 50 51 True 46 51 True 804 886 True
BO, 2, GFT-DPARX 11 3 False 27 29 True 50 52 True 46 30 False 804 578 False
BO, 2, Weather-DPARX 11 3 False 27 29 True 50 52 True 46 45 True 804 841 True
BO, 2, GFT-DARX 11 3 False 27 29 True 50 52 True 46 84 False 804 1016 True
BO, 2, Weather-DARX 11 3 False 27 29 True 50 52 True 46 59 True 804 926 True
BO, 3, GFT-DPARX 11 3 False 27 30 False 50 52 True 46 29 False 804 573 False
BO, 3, Weather-DPARX 11 3 False 27 30 False 50 52 True 46 44 True 804 855 True
BO, 3, GFT-DARX 11 3 False 27 17 False 50 23 False 46 78 False 804 297 False
BO, 3, Weather-DARX 11 3 False 27 30 False 50 52 True 46 51 True 804 882 True
BO, 4, GFT-DPARX 11 3 False 27 31 False 50 52 True 46 29 False 804 565 False
BO, 4, Weather-DPARX 11 3 False 27 31 False 50 52 True 46 44 True 804 862 True
BO, 4, GFT-DARX 11 3 False 27 18 False 50 24 False 46 82 False 804 323 False
BO, 4, Weather-DARX 11 3 False 27 31 False 50 52 True 46 56 True 804 883 True

MX, 1, GFT-DPARX 5 6 True 30 31 True 47 48 True 1230 1494 True 7839 7445 True
MX, 1, Weather-DPARX 5 4 True 30 31 True 47 47 True 1230 1163 True 7839 6657 True
MX, 1, GFT-DARX 5 4 True 30 31 True 47 47 True 1230 3265 False 7839 9745 True
MX, 1, Weather-DARX 5 4 True 30 31 True 47 47 True 1230 3254 False 7839 9670 True
MX, 2, GFT-DPARX 5 7 True 30 32 True 47 49 True 1230 1562 True 7839 7627 True
MX, 2, Weather-DPARX 5 5 True 30 32 True 47 48 True 1230 1110 True 7839 6426 True
MX, 2, GFT-DARX 5 5 True 30 32 True 47 48 True 1230 4603 False 7839 12247 False
MX, 2, Weather-DARX 5 5 True 30 32 True 47 48 True 1230 4557 False 7839 12065 False
MX, 3, GFT-DPARX 5 8 False 30 33 False 47 50 False 1230 1579 True 7839 7804 True
MX, 3, Weather-DPARX 5 6 True 30 33 False 47 48 True 1230 1021 True 7839 6152 True
MX, 3, GFT-DARX 5 6 True 30 33 False 47 47 True 1230 5218 False 7839 15276 False
MX, 3, Weather-DARX 5 6 True 30 33 False 47 47 True 1230 5146 False 7839 14829 False
MX, 4, GFT-DPARX 5 9 False 30 34 False 47 51 False 1230 1621 True 7839 7966 True
MX, 4, Weather-DPARX 5 7 True 30 34 False 47 48 True 1230 908 False 7839 5856 False
MX, 4, GFT-DARX 5 5 True 30 34 False 47 46 True 1230 8195 False 7839 20954 False
MX, 4, Weather-DARX 5 7 True 30 34 False 47 46 True 1230 7869 False 7839 19719 False

CL, 1, GFT-DPARX 9 10 True 19 20 True 44 45 True 964 1013 True 12985 12587 True
CL, 1, Weather-DPARX 9 9 True 19 20 True 44 46 True 964 922 True 12985 12003 True
CL, 1, GFT-DARX 9 8 True 19 20 True 44 45 True 964 1215 True 12985 13699 True
CL, 1, Weather-DARX 9 8 True 19 20 True 44 46 True 964 1216 True 12985 13700 True
CL, 2, GFT-DPARX 9 11 True 19 21 True 44 46 True 964 1050 True 12985 12760 True
CL, 2, Weather-DPARX 9 10 True 19 21 True 44 43 True 964 929 True 12985 11682 True
CL, 2, GFT-DARX 9 9 True 19 21 True 44 44 True 964 1335 False 12985 14500 True
CL, 2, Weather-DARX 9 9 True 19 21 True 44 44 True 964 1338 False 12985 14440 True
CL, 3, GFT-DPARX 9 12 False 19 22 False 44 47 False 964 1093 True 12985 12904 True
CL, 3, Weather-DPARX 9 10 True 19 22 False 44 45 True 964 930 True 12985 11584 True
CL, 3, GFT-DARX 9 10 True 19 22 False 44 44 True 964 1552 False 12985 16003 True
CL, 3, Weather-DARX 9 10 True 19 22 False 44 44 True 964 1558 False 12985 15848 True
CL, 4, GFT-DPARX 9 13 False 19 23 False 44 48 False 964 1121 True 12985 13039 True
CL, 4, Weather-DPARX 9 11 True 19 23 False 44 49 False 964 902 True 12985 11348 True
CL, 4, GFT-DARX 9 10 True 19 23 False 44 47 False 964 1742 False 12985 18800 False
CL, 4, Weather-DARX 9 11 True 19 23 False 44 47 False 964 1752 False 12985 18068 False


