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Increasing emphasis on local and distributed 
power generation from renewable energy 
resources 

 

Reduction in carbon footprint. 

 

Lower transmission and distribution losses 
through local generation. 

 

Other socio-economic impetus. 

Introduction : Solar PV importance  
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Photovoltaic (PV) array generation highly 
variable and intermittent 
 

PV output has high temporal dependency 
 

Also depends on environmental factors such as 
cloud cover, temperature 
 

Effective usage requires a near-optimal prediction 
of PV array output – can be used to match 
workload profile. 

Introduction : Solar PV challenges  
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Available data on j-th hour of the i-th day : 
Historic PV generation 

Historic weather conditions 

Forecast for future weather conditions 
 

 

Goal : 
Predict Solar output for the hours 𝑗 + 1, 𝑗 + 2,… , 24 of the 𝑖 - 
𝑡ℎ day 

  Revise predictions as the hour increases i.e. new data is 
available 

Introduction : Problem Definition 
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Hourly prediction of Solar PV array output with a 
prediction bound of a day. 
 
Uses inherent temporal dependency of PV output to 
get a global trend of PV output : time series motif 
used. 
 
Local variations modeled by the corresponding 
environmental conditions and output from observed 
values of PV output for the past hours of the day. 
 
Use of a general purpose Bayesian Ensemble to 
combine the global trend and local variations to get 
the final prediction. 

Brief Summary of this work 
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Classical time series predictions such as ARMA and 
ARIMA. 
 

Weighted average methods for PV output prediction : 
prediction horizon is generally one hour. 

Cox, 1961 

Piorno et al. , 2009 
 

Prediction of irradiation pattern : close correspondence 
between irradiance and Solar PV values. 
 

Bofinger et al. (2006) : Global forecasts of an European 
weather center modified by local statistical models. 

 

Existing Research 
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Proposed Framework 
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Extraction of profiles 
from training data 
 Solar PV values for 

each day represented 
by a vector where the 
dimensions 
correspond to the hour 
of the day 
 

 K-means clustering on 
the training vectors to 
get a set of profiles of 
pre-determined 
cardinality. 

 

Bayesian Ensemble: Preprocessing 
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Frequent episode counting to get motifs 

Stream of days converted to stream of profile labels. 

Start with a pre-determined window size W. 

Slide the window over the data stream and count 
eligible episodes 

 

 

Bayesian Ensemble : Motif Discovery 
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For a window 𝑊𝑖  (|𝑊𝑖| = 𝑊) containing labels 
𝑑𝑖 =< 𝑑𝑖−𝑊,  … , 𝑑𝑖−1 > , eligible episodes are defined as all such 

sequences 𝑒𝑝 =< 𝑑𝑝1 , 𝑑𝑝2 , 𝑑𝑝3 … > , such that 𝑝1 < 𝑝2 < 𝑝3 

Definition : Eligible Episodes 
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Count maximally frequent eligible episodes using 
Apriori algorithm (Agarwal and Srikant, 1994) 

 

 

 

 

 

 

 

 

Bayesian Ensemble : Motif Discovery  
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An eligible episode is maximally frequent iff : 

1. 𝑠𝑢𝑝𝑒𝑝𝑖 > 𝜏 

2. ∄ 𝑒𝑝𝑖  such that 𝑒𝑝𝑖 < 𝑒𝑝𝑗 

Definition : Maximally frequent Eligible Episodes 
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Bayesian Ensemble : Motif based Classification 
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While predicting for i-th day, find motifs that can contain the i-th 
label and labels of some of the previous days in a window size 𝑊 − 1 

 
 

Set of such motifs denoted by 
〈𝑒𝑝 𝐷𝑛 〉  = 𝑒𝑝 𝐷𝑛 1, 𝑒𝑝 𝐷𝑛 2, … , 𝑒𝑝 𝐷𝑛 𝑝  and support counted as  

sup 𝑒𝑝 Dn = 𝑠𝑢𝑝𝑒𝑝 𝐷𝑛 𝑝
𝑝

 

Classifier Output : Motif Based Classifier 
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Find Euclidean distance between partially observed 
current day and corresponding partial profile centroids. 

Take normalized inverse distance as classifier output 

 

 
 
 

 

 

  where 𝜙 =  
1

𝑥 𝑖 1:𝑗 −𝜇 𝑛 1:𝑗
𝑛  

 

Bayesian Ensemble : KNN based Classification 

7/16/2012 
Fine-Grained Photovoltaic Ouput Prediction 
using a Bayesian Ensemble 

12 

Classifier Output : k-NN based classifier 
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Build table of actual weather conditions (𝛾) and corresponding 
PV profile label of the day 
 
Weather forecast denoted by  

𝜌𝑖,𝑗 = 〈𝜌𝑖,𝑗+1,1, 𝜌𝑖,𝑗+2,2, … 𝜌𝑖,𝐽,𝐽−𝑗〉 
 
Posterior Probability calculated as: 

Pr 𝐷𝑛 𝜌𝑖,𝑗+𝑡,𝑡 , 𝛾 ∝  𝐿 𝐷𝑛 𝜌𝑖,𝑗+𝑡,𝑡 𝑘

𝑘

Pr (𝐷𝑛) 

 
 

Bayesian Ensemble : Naïve Bayes based Classifier 
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Classifier Output : Naïve Bayes based classifier 
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Probabilities of profiles combined using Bayesian 
Model averaging 

 

Bayesian Ensemble : BMA 
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Assume uniform priors for classifiers 
 

Final Prediction output through estimation 

 

Bayesian Ensemble : BMA 

7/16/2012 
Fine-Grained Photovoltaic Ouput Prediction 
using a Bayesian Ensemble 

15 

Ensemble Output : BMA estiamtion 
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Datasets 

• 154 kW PV installation at a commercial building in 
Palo Alto, CA, USA. 
5 min interval data 

March 2011 to November 2011 (267 days) 

Hourly weather data from a nearby weather station 

Weather data : temperature, humidity, visibility and weather 
conditions related to cloud cover/precipitation. 
 

• Solar and weather data from Amherst, MA 

 

 

Experimental Observations 
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Under uniform prior assumption, 
 
 

 Heuristics used to compute the priors: 
 
 
 
 
 

All parameters estimated through cross-validation. 
 

Experimental Observations : Parameter Estiamtion 
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Competing Methods: 

Previous Day as prediction 

ARWeather : Extension of Piorno et al.’s 
framework to increase prediction horizon to a day 
Weather attributes with the exception of sunrise and sunset 

clustered into 𝑁𝐶 groups using k-means algorithm 

Set of weather attributes represented by mean Solar PV value of 
corresponding cluster 

To predict multiple hours, use previous prediction as actual value 
in the next iteration 
 
 
 
  

Experimental Observations : Competing Methods 
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Stagewise modeling: 
 Inspired from Stepwise regression . Hocking, 1976 

Prediction done in correlated stages 

Stage1: Average Model 

Stage2: Auto Regression using Solar PV values 

Stage3: Regression using weather attributes 

 

Bayesian Ensemble methods: 
• Ensemble2 :  only KNN based classifier and Naïve Bayes 

classifiers used in the ensemble 

• Ensemble3 : all three classifiers (i.e. including motif based) 
used in the ensemble 

Experimental Observations : Competing Methods 
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Experimental Observations : Results 

7/16/2012 
Fine-Grained Photovoltaic Ouput Prediction 
using a Bayesian Ensemble 

20 

Comparative prediction performance at 1-hour offset 
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Experimental Observations : Results 
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Comparative errors of the different methods 
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Experimental Observations : Results 
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Comparative error with different prediction horizon 
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Experimental Observations : Results 
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Ensemble3: Performance conditioned on weather and hour. 
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Experimental Observations : Results 
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Ensemble3: Workload scheduling 

    

Workload Schedule Optimized workload Schedule 
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Experimental Observations : Results 
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Ensemble3: Workload scheduling 

    

Workload Schedule Optimized workload Schedule 
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A systematic approach toward Solar PV 
prediction 
 

Naturally suited to day-long predictions. 
 

Three classifiers capture three different nature in 
the Data 
 

Ensemble method can incorporate more 
predictors to improve accuracy 
 

Discussions  
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Thoroughly investigate performance of different 
combinations of the classifiers with respect to different 
hour and conditions 
 

Investigate better heuristic to calculate the likelihood of 
the classifiers for a given day 

• An hour wise confusion matrix for days 
 

Apply the method on more installations to further 
analyze the process. 

 

Future Works  
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