Introduction 00000	Methods ೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦	Instability Analysis	Ablation Test	Conclusion 0000	References
[Data Driven M	ethods for [Disease For	ecasting	
	Pr	ithwish Chakrab	orty ^{1,2} ,		3

Prithwish Chakraborty^{1,2}, Pejman Khadivi^{1,2}, Bryan Lewis³, Aravindan Mahendiran^{1,2}, Jiangzhuo Chen³, Patrick Butler^{1,2}, Elaine O. Nsoesie^{3,4,5}, Sumiko R. Mekaru^{4,5}, John S. Brownstein^{4,5}, Madhav V. Marathe³, Naren Ramakrishnan^{1,2}

¹Dept. of Computer Science, Virginia Tech, USA
 ²Discovery Analytics Center, Virginia Tech, USA
 ³NDSSL, Virginia Bioinformatics Institute, USA
 ⁴Children's Hopsital Informatics Program, Boston Children's Hopsital, USA
 ⁵Dept. of Pediatrics, Harvard Medical School, USA.

October 27, 2014

イロト 不過 ト イヨト イヨト しきょうののう

Introduction

- Motivation: Data driven epidemiology
- Data driven Epidemiology: Problems
- Main Goals

2 Methods

- Data Sources
- Custom User Keywords
- Matrix Factorization using Nearest Neighborhood
- Model level vs Data level fusion
- Instability Analysis
- 4 Ablation Test
- 6 Conclusion
 - Extending to other sources: Opentable
 - Summary

- Computatational models (ode, etc.)
- Population level vs Network level
- Effectiveness depends on Good Surveillance data.

= 200

- Computatational models (ode, etc.)
- Population level vs Network level
- Effectiveness depends on Good Surveillance data.
- Surveillance often delayed
- Surveillance often updated over time

Introduction 0●000	Methods 0000000000000000000	Instability Analysis	Ablation Test	Conclusion 0000	References
Epidemic	ology in data o	driven world			

- Surrogate information can be found in social medium
- Physical indicators can also have causal effects on diseases.
- Can complement traidtionl surveillance
 - Provide real-time estimates
 - Provide robust estimates of already published data

- Predicting Hantavirus outbreaks from news articles*
- Chikungunya Spread detection
- Influenza like Illness (ILI) forecasting.

* Saurav Ghosh et al. "Forecasting Rare Disease Outbreaks with Spatio-temporal Topic Models". In: *NIPS 2013 workshop on Topic Models*. 2013

Introduction	Methods ೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦	Instability Analysis	Ablation Test	Conclusion 0000	References
Problem	Overview				

Near-horizon forecast of ILI case counts at country level*

伺 ト イヨト イヨト ヨヨー わえつ

Introduction ○○○●○	Methods 0000000000000000	Instability Analysis	Ablation Test	Conclusion 0000	References
Problem	Overview				

Near-horizon forecast of ILI case counts at country level*

- Predicting weekly Influenza-like-illness (ILI) case counts for 15 Latin American countries
- Investigating different open source data-streams as possible surrogate indicators of ILI

* Prithwish Chakraborty et al. "Forecasting a Moving Target: Ensemble Models for ILI Case Count Predictions". In: Proceedings of the 2014 SIAM International Conference on Data Mining, Philadelphia, Pennsylvania, USA, April 24-26, 2014. 2014, pp. 262–270

Introduction ○○○○●	Methods 0000000000000000000	Instability Analysis	Ablation Test	Conclusion 0000	References
Main Go	als				

Real-time prospective study - most studies till this paper were retrospective.

Introduction ○○○○●	Methods 00000000000000000	Instability Analysis	Ablation Test	Conclusion 0000	References
Main Go	als				

- Real-time prospective study most studies till this paper were retrospective.
- Integrates both social and physical indicators

Introduction ○○○○●	Methods 0000000000000000	Instability Analysis	Ablation Test	Conclusion 0000	References
Main Go	als				

- Real-time prospective study most studies till this paper were retrospective.
- Integrates both social and physical indicators
- Oata level fusion vs Model level fusion?

Introduction ○○○○●	Methods 00000000000000000	Instability Analysis	Ablation Test	Conclusion 0000	References
Main Go	als				

- Real-time prospective study most studies till this paper were retrospective.
- Integrates both social and physical indicators
- Oata level fusion vs Model level fusion?
- Accounting for uncertainties in the official surveillance estimates

Introduction ○○○○●	Methods 000000000000000000	Instability Analysis	Ablation Test	Conclusion 0000	References
Main Go	als				

- Real-time prospective study most studies till this paper were retrospective.
- Integrates both social and physical indicators
- Oata level fusion vs Model level fusion?
- Accounting for uncertainties in the official surveillance estimates
- Investigate importance of different sources Ablation test

Introduction	Methods	Instability Analysis	Ablation Test	Conclusion	References

Introduction

- Motivation: Data driven epidemiology
- Data driven Epidemiology: Problems
- Main Goals

2 Methods

- Data Sources
- Custom User Keywords
- Matrix Factorization using Nearest Neighborhood
- Model level vs Data level fusion
- Instability Analysis
- Ablation Test
- 5 Conclusion
 - Extending to other sources: Opentable
 - Summary

Introduction 00000	Methods ೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦	Instability Analysis	Ablation Test	Conclusion 0000	References
Key Ingr	edients				

- Better Data extract information from external indicators.
- Better Models handle non-linearity.
- Handle Real world noise

김 국가 문제

= 200

Introduction 00000	Methods 00000000000000000000	Instability Analysis	Ablation Test	Conclusion 0000	References
Overall	Framework				

Introduction 00000	Methods ●000000000000000000000000000000000000	Instability Analysis	Ablation Test	Conclusion 0000	References
Data So	urces				

• Non-physical indicators

Introduction 00000	Methods ●000000000000000000000000000000000000	Instability Analysis	Ablation Test	Conclusion 0000	References
Data Sou	urces				

- Non-physical indicators
 - Google Flu Trends uses unpublished set of keywords

Introduction 00000	Methods ●000000000000000000000000000000000000	Instability Analysis	Ablation Test	Conclusion 0000	References
Data So	urces				

Non-physical indicators

- Google Flu Trends uses unpublished set of keywords
- Q Custom User Keywords
 - Google Search Trends
 - Ø Healthmap News Feed
 - O Twitter Feed

-

Introduction 00000	Methods ●000000000000000000000000000000000000	Instability Analysis	Ablation Test	Conclusion 0000	References
Data So	urces				

Non-physical indicators

- Google Flu Trends uses unpublished set of keywords
- Q Custom User Keywords
 - Google Search Trends
 - Ø Healthmap News Feed
 - O Twitter Feed
- Physical indicators
- Misc. Indicators
 - Opentable reservations

Introduction 00000	Methods ⊙●○○○○○○○○○○○○○○	Instability Analysis	Ablation Test	Conclusion 0000	References
Google F	lu Trends				

Introduction 00000	Methods ००●००००००००००००	Instability Anal	ysis Ablation	Test	Conclusion 0000	References
Finding (Custom user k	keyword	dictionary			

- Started with a seed set of keywords from experts.
 - Seed set contains words in Spanish, Portuguese, and English.
 - example : gripe (flu in Spanish)

Introduction 00000	Methods ○○●○○○○○○○○○○○○○	Instability Ana	alysis Ab	lation Test	Conclusion 0000	References
Finding (Custom user k	keyword	diction	ary		

- Started with a seed set of keywords from experts.
 - Seed set contains words in Spanish, Portuguese, and English.
 - example : gripe (flu in Spanish)
- Pseudo-query expansion
 - Crawled top 20 web-sites for each seed word.
 - Crawled "expert" web-sites e.g. CDC.
 - Crawled few other hand-picked sites.
 - Top 500 frequently occurring words selected.

Introduction 00000	Methods ००●००००००००००००	Instability Ana	lysis Abl	ation Test	Conclusion 0000	References
Finding (Custom user k	eyword	diction	ary		

- Started with a seed set of keywords from experts.
 - Seed set contains words in Spanish, Portuguese, and English.
 - example : gripe (flu in Spanish)
- Pseudo-query expansion
 - Crawled top 20 web-sites for each seed word.
 - Crawled "expert" web-sites e.g. CDC.
 - Crawled few other hand-picked sites.
 - Top 500 frequently occurring words selected.
- Time series correlation analysis
 - Used Google Correlate to find words with search history correlated with ILI incidence curve.
 - Interesting words such as ginger and Acemuk found.

Introduction 00000	Methods ००●००००००००००००	Instability Ana	lysis Abl	ation Test	Conclusion 0000	References
Finding (Custom user k	eyword	diction	ary		

- Started with a seed set of keywords from experts.
 - Seed set contains words in Spanish, Portuguese, and English.
 - example : gripe (flu in Spanish)
- Pseudo-query expansion
 - Crawled top 20 web-sites for each seed word.
 - Crawled "expert" web-sites e.g. CDC.
 - Crawled few other hand-picked sites.
 - Top 500 frequently occurring words selected.
- Time series correlation analysis
 - Used Google Correlate to find words with search history correlated with ILI incidence curve.
 - Interesting words such as ginger and Acemuk found.
- Final filtering : 114 words

Introduction 00000 Methods

Instability Analysis

Ablation Test

Conclusion

References

Finding Custom user keyword dictionary (contd..)

Symptomatic words: "bronquitis", "catarro", "tos seca" (whooping cough)

Medicinal words: "acemuk", "claritromicina" (clarithromycin)

Interesting words: ginger ("jengibre"), leave letter ("letra de deja")

・ 同 ト ・ ヨ ト ・ ヨ ト

-

Introduction 00000	Methods ○○○○●○○○○○○○○○○○	Instability Analysis	Ablation Test	Conclusion 0000	References
0FT					

GFT vs other non-physical indicators using custom keyword set

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction 00000	Methods ○○○○○○○○○○○○○○○○	Instability Analysis	Ablation Test	Conclusion 0000	References
Physical	Indicators				

- Meteorological data for every lat-long, worldwide, every 8 hours
- Humidity, Temperature, Rainfall
- Analyzing grid cells covering PAHO sites.

Introduction Methods Instability Analysis Ablation Test Conclusion References

System framework once again!!

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ヨヨ のの⊙

Introduction 00000	Methods ○○○○○○●○○○○○○○	Instability Analysis	Ablation Test	Conclusion 0000	References
Prelimina	aries				

• To find predictive model f

$$f:\mathcal{P}_t=f\left(\mathcal{P},\mathcal{X}\right)$$

• Variable Setup

$$V_{t} \equiv \langle P_{t-\beta-\alpha}, \mathcal{X}_{t-\beta-\alpha}, P_{t+1-\beta-\alpha}, \mathcal{X}_{t+1-\beta-\alpha}, \dots, \\ P_{t-\alpha}, \mathcal{X}_{t-\alpha} \rangle \\ L_{t} \equiv P_{t}$$

Parameters

- α : the lookahead window length
- β : the lookback window length

Introduction 00000	Methods ○○○○○○○●○○○○○○	Instability Analysis	Ablation Test	Conclusion 0000	References
Matrix F	actorization ((MF)			

• Can find latent factors in the dataset.

A ►

- Can find latent factors in the dataset.
- Model

$$\widehat{\mathcal{M}}_{i,j} = b_{i,j} + U_i^\mathsf{T} F_j$$
$$b_{i,j} = \bar{\mathcal{M}} + b_j$$

▲口▶ ▲圖▶ ▲臣▶ ▲臣▶ 王曰 わ�?

Introduction 00000	Methods ○○○○○○○●○○○○○○	Instability Analysis	Ablation Test	Conclusion 0000	References
Matrix I	⁻ actorization ((MF)			

• Can find latent factors in the dataset.

Model

$$\widehat{\mathcal{M}}_{i,j} = b_{i,j} + U_i^\mathsf{T} F_j$$
$$b_{i,j} = \bar{\mathcal{M}} + b_j$$

• Fitting

$$b_{*}, F, U = \operatorname{argmin}(\sum_{i=1}^{m-1} \left(\mathcal{M}_{i,n} - \widehat{\mathcal{M}}_{i,n}\right)^{2} + \lambda_{1}(\sum_{j=1}^{n} b_{j}^{2} + \sum_{i=1}^{m-1} ||U_{i}||^{2} + \sum_{j=1}^{n} ||F_{j}||^{2}))$$
(1)

= 200

 Introduction
 Methods
 Instability Analysis
 Ablation Test
 Conclusion
 References

 Nearest
 Neighbor model (NN)

 <t

• Impose non-linearity.

《口》《聞》《臣》《臣》

 Introduction
 Methods
 Instability Analysis
 Ablation Test
 Conclusion
 References

 Nearest
 Neighbor model (NN)
 References
 <t

- Impose non-linearity.
- $\mathcal{N}(i) = \{k : V_k \text{ is one of the top K nearest neighbors of } V_i\}$

Introduction Methods Instability Analysis Ablation Test Conclusion References

- Impose non-linearity.
- $\mathcal{N}(i) = \{k : V_k \text{ is one of the top K nearest neighbors of } V_i\}$

Fitting

$$\widehat{P}_{T'} = \left(\sum_{k \in \mathcal{N}(T')} \theta_k L_{k, T-\alpha}\right) / \sum_{k=1}^{K} \theta_k$$
(2)

イロト (得) (ヨト (ヨト ヨヨ ののの

• Inspired from Koren et al.'s work* in Recommender systems.

< 17 ▶

★ ∃ ▶ ★ ∃ ▶ ∃ | = • • • • • •

• Inspired from Koren et al.'s work* in Recommender systems.

$$\widehat{\mathcal{M}}_{i,j} = b_{i,j} + U_i^T F_j + F_j |\mathcal{N}(i)|^{-\frac{1}{2}} \sum_{k \in \mathcal{N}(i)} (\mathcal{M}_{i,k} - b_{i,k}) x_k$$
(3)

< 17 ▶

★ ∃ ▶ ★ ∃ ▶ ∃ | = • • • • • •

۲

• Inspired from Koren et al.'s work* in Recommender systems.

$$\widehat{\mathcal{M}}_{i,j} = b_{i,j} + U_i^T F_j + F_j |\mathcal{N}(i)|^{-\frac{1}{2}} \sum_{k \in \mathcal{N}(i)} (\mathcal{M}_{i,k} - b_{i,k}) x_k$$
(3)

۲

$$b_{*}, F, U, x_{*} = \operatorname{argmin}(\sum_{i=1}^{m-1} \left(\mathcal{M}_{i,n} - \widehat{\mathcal{M}}_{i,n}\right)^{2} + \lambda_{2}(\sum_{j=1}^{n} b_{j}^{2} + \sum_{i=1}^{m-1} ||U_{i}||^{2} + \sum_{j=1}^{n} ||F_{j}||^{2} + \sum_{k} ||x_{k}||^{2}))$$
(4)

■ ▶ ▲ ■ ▶ ■ ■ ■ ● ○ ○ ○

* Yehuda Koren. "Factorization meets the neighborhood: a multifaceted collaborative filtering model". In: *Proceedings of KDD '08.* 2008, pp. 426–434

Introduction 00000	Methods ○○○○○○○○○○●○○○○	Instability Analysis	Ablation Test	Conclusion 0000	References
Accuracy	, comparison				

• Quality Metric

$$\mathcal{A} = \frac{4}{N_{p}} \sum_{t=t_{s}}^{t_{e}} \left(1 - \frac{|P_{t} - \hat{P}_{t}|}{\max(P_{t}, \hat{P}_{t}, 10)} \right)$$
(5)

= na@

Accuracy	comparison				
Introduction 00000	Methods ○○○○○○○○○○○●○○○	Instability Analysis	Ablation Test	Conclusion 0000	References

Table 1: Comparing forecasting accuracy of models using individual sources. Scores in this and other tables are normalized to [0,4] so that 4 is the most accurate.

Model	Sources	AR	BO	CL	CR	CO	EC	GF	GT	HN	MX	NI	PA	PY	PE	SV	All
	W	2.78	2.46	2.39	2.14	2.70	2.22	2.12	2.63	2.52	2.73	2.31	2.21	2.49	2.77	2.61	2.47
	H	2.81	2.31	2.22	1.92	2.43	2.04	2.11	2.57	2.33	2.48	2.39	2.15	2.18	2.47	2.33	2.32
MF	τ	2.37	2.35	2.18	2.03	2.21	2.12	1.83	2.12	2.29	2.03	1.89	2.06	1.96	2.20	2.21	2.12
	F	2.34	2.11	2.29	N/A	N/A	N/A	N/A	N/A	N/A	2.71	N/A	N/A	2.31	2.24	N/A	2.33
	8	2.48	2.21	2.33	2.04	2.31	2.21	1.93	2.03	2.15	2.51	2.42	2.52	2.33	1.93	2.30	2.24
	W	2.92	2.93	2.63	2.52	2.66	2.51	2.71	2.82	2.59	2.62	2.55	2.59	2.61	2.80	2.52	2.66
	\mathcal{H}	2.73	3.10	2.42	2.27	2.83	2.64	2.43	2.25	2.71	2.31	2.61	2.35	2.43	2.39	2.52	2.53
NN	τ	2.72	2.86	2.31	2.62	2.77	2.52	2.71	2.66	2.51	2.44	2.13	2.01	1.77	2.51	2.20	2.45
	F	2.11	2.21	2.33	N/A	N/A	N/A	N/A	N/A	N/A	2.19	N/A	N/A	2.41	2.32	N/A	2.26
	8	2.51	2.31	2.41	1.81	2.52	2.41	2.12	2.29	2.51	2.13	2.61	2.14	2.51	1.87	2.12	2.28
	W	2.99	3.01	2.88	2.53	2.78	2.81	2.77	2.83	2.61	2.70	2.56	2.66	2.82	2.79	2.51	2.75
	\mathcal{H}	2.81	3.13	2.63	2.58	2.91	2.77	2.57	2.63	2.73	2.50	2.61	2.54	2.51	2.69	2.61	2.68
MFN	τ	2.74	3.03	2.51	2.64	2.83	2.51	2.81	2.71	2.60	2.48	2.13	2.55	2.19	2.57	2.31	2.57
	F	2.33	2.41	2.34	N/A	N/A	N/A	N/A	N/A	N/A	2.69	N/A	N/A	2.54	2.48	N/A	2.46
	8	2.61	2.44	2.55	2.22	2.61	2.52	2.71	2.31	2.62	2.48	2.61	2.31	2.53	2.23	2.13	2.46

- On average, MFN has better performance over MF and NN
- In Mexico, MF has the best accuracy possibly because the 2013 ILI season in Mexico was late by a few weeks than in usual.

・ロ・・得・・モ・・モー・ ショー うくつ

Introduction 00000	Methods ○○○○○○○○○○○●○○	Instability Analysis	Ablation Test	Conclusion 0000	References
Model le	vel fusion				

• Output from models combined based on historical accuracy.

= 200

Introduction 00000	Methods ○○○○○○○○○○○○○○○○	Instability Analysis	Ablation Test	Conclusion 0000	References
Model le	vel fusion				

- Output from models combined based on historical accuracy.
- Model

$${}_{C}\mathcal{M}_{t} = \left[\begin{array}{ccc} {}_{1}\widehat{P}_{t} & \dots & {}_{C}\widehat{P}_{t} & P_{t} \end{array}\right]$$
(6)

- ₹ ₹ >

3 = 1 - 1 Q (A

Introduction 00000	Methods ○○○○○○○○○○○●○○	Instability Analysis	Ablation Test	Conclusion 0000	References
Model le	vel fusion				

- Output from models combined based on historical accuracy.
- Model ${}_{C}\mathcal{M}_{t} = \left[\begin{array}{ccc} {}_{1}\widehat{P}_{t} & \dots & {}_{C}\widehat{P}_{t} & P_{t} \end{array}\right]$ (6)
- Fitting

$$c\widehat{\mathcal{M}}_{i,j} = \mu_i + cb_j + cU_i^{\mathsf{T}}cF_j + cF_j|_c\mathcal{N}(i)|^{-\frac{1}{2}}\sum_{k\in cN(i)}(c\mathcal{M}_{i,k} - \mu_i + cb_k)_cx_k$$
(7)

伺 ト イヨト イヨト ヨヨー わえつ

Introduction 00000	Methods ○○○○○○○○○○○○○○	Instability Analysis	Ablation Test	Conclusion 0000	References
Data lev	el fusion				

• Feature vector is a tuple over all data set features.

$$\mathcal{X}_t = \langle \mathcal{T}_t, \mathcal{W}_t \rangle$$

글 🖒 🖻

= 200

Use MFN to fit the value

Introduction 00000	Methods ○○○○○○○○○○○○○	Instability Analysis	Ablation Test	Conclusion 0000	References
Accuracy	/ comparison				

Table 2: Comparison of prediction accuracy while combining all data sources and using MFN regression.

Fusion Level	AR	во	CL	CR	CO	EC	GF	GT	HN	MX	NI	PA	PY	PE	sv	All
Model	3.12	3.22	3.03	2.88	2.98	3.13	2.87	2.99	2.87	3.00	2.77	2.82	2.81	2.92	2.87	2.95
Data	3.01	2.97	3.13	2.87	2.86	3.04	2.91	2.88	2.72	2.89	2.70	2.60	2.88	2.81	2.92	2.88

Introduction 00000	Methods ○○○○○○○○○○○○○○○	Instability Analysis	Ablation Test	Conclusion 0000	References
Accuracy	/ comparison				

Table 2: Comparison of prediction accuracy while combining all data sources and using MFN regression.

Fusion Level	AR	во	CL	CR	CO	EC	GF	GT	HN	MX	NI	PA	PY	PE	sv	All
Model	3.12	3.22	3.03	2.88	2.98	3.13	2.87	2.99	2.87	3.00	2.77	2.82	2.81	2.92	2.87	2.95
Data	3.01	2.97	3.13	2.87	2.86	3.04	2.91	2.88	2.72	2.89	2.70	2.60	2.88	2.81	2.92	2.88

- On average, model level fusion produces better accuracy than data level fusion.
- Interesting deviations like Chile and El Salvador indicates that a possible strategy could be a mix of data level and model fusion however complexity of training will increase manifold.

이 물 에 가 물 에 물네.

Introduction	Methods	Instability Analysis	Ablation Test	Conclusion	References

Introduction

- Motivation: Data driven epidemiology
- Data driven Epidemiology: Problems
- Main Goals

2 Methods

- Data Sources
- Custom User Keywords
- Matrix Factorization using Nearest Neighborhood
- Model level vs Data level fusion
- Instability Analysis
- 4 Ablation Test
- 5 Conclusion
 - Extending to other sources: Opentable
 - Summary

• Can take up to several months to stabilize.

 Average relative error of PAHO count values with respect to stable values. (a) Comparison between Argentina and Colombia (b) Comparison between different seasons for Argentina.

< 17 ▶

글 🖌 🔺 글 🕨

ъ

Introduction 00000	Methods ೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦	Instability Analysis	Ablation Test	Conclusion 0000	References
Correcti	ng uncertainty				

- Recognize high, low and mid-season months for countries.
- Variable setup

$$\mathcal{P}_{A}{}^{S} = \left\{ (1, P_{i}^{(1)}, \dot{P}_{i}, N_{i}^{(1)}), ..., (m, P_{i}^{(m)}, \dot{P}_{i}, N_{i}^{(m)}), ... \right\}$$

Correction Model

$$\hat{P}_{i}^{(m)} = a_{0} + a_{1}m + a_{2}P_{i}^{(m)} + a_{3}N_{i}^{(m)}$$
(8)

■ ▶ ▲ ■ ▶ ■ ■ ■ ● ○ ○ ○

Introduction 00000	Methods ೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦	Instability Analysis	Ablation Test	Conclusion 0000	References
Correcti	ng uncertainty				

- Recognize high, low and mid-season months for countries.
- Variable setup

$$\mathcal{P}_{A}^{S} = \left\{ (1, P_{i}^{(1)}, \dot{P}_{i}, N_{i}^{(1)}), ..., (m, P_{i}^{(m)}, \dot{P}_{i}, N_{i}^{(m)}), ... \right\}$$

Correction Model

$$\hat{P}_{i}^{(m)} = a_{0} + a_{1}m + a_{2}P_{i}^{(m)} + a_{3}N_{i}^{(m)}$$
(8)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Table 3: Comparison of prediction accuracy while using model level fusion on MFN regressors and employing PAHO stabilization.

Correction	AR	BO	CL	CR	CO	EC	GF	GT	HN	MX	NI	PA	PY	PE	sv	All
Method																
None	3.12	3.22	3.03	2.88	2.98	3.13	2.87	2.99	2.87	3.00	2.77	2.82	2.81	2.92	2.87	2.95
Weeks	3.15	3.24	3.04	2.87	2.97	3.17	2.87	2.99	2.88	3.05	2.77	2.91	3.02	2.91	2.88	2.98
Ahead																
Num.	3.20	3.24	3.03	2.88	2.96	3.12	2.87	3.01	2.89	3.12	2.78	2.92	3.04	2.91	2.87	2.99
samples																
Combined	3.21	3.24	3.05	2.89	2.96	3.19	2.88	3.00	2.89	3.13	2.77	2.93	3.08	2.92	2.88	3.00

Introduction	Methods	Instability Analysis	Ablation Test	Conclusion	References

Introduction

- Motivation: Data driven epidemiology
- Data driven Epidemiology: Problems
- Main Goals

2 Methods

- Data Sources
- Custom User Keywords
- Matrix Factorization using Nearest Neighborhood
- Model level vs Data level fusion
- Instability Analysis

4 Ablation Test

- 5 Conclusion
 - Extending to other sources: Opentable
 - Summary

Introduction	Methods	Instability Analysis	Ablation Test	Conclusion	References

Investigating importance of each source : Ablation Test

Sources	AR	BO	CL	CR	CO	EC	GF	GT	HN	MX	NI	PA	PY	PE	SV	All
All	3.21	3.24	3.05	2.89	2.96	3.19	2.87	3.00	2.89	3.13	2.77	2.93	3.08	2.92	2.88	3.00
w/o W	2.91	2.99	2.77	2.71	2.61	2.59	2.66	2.69	2.49	2.78	2.62	2.87	2.60	2.43	2.67	2.69
w/oH	3.04	2.85	2.89	2.56	2.81	2.77	2.61	2.75	2.75	2.82	2.57	2.75	2.51	2.87	2.71	2.75
w/o T	2.92	3.14	2.95	2.61	2.72	2.81	2.88	2.79	2.61	2.93	2.74	2.63	2.79	2.74	2.81	2.80
w/o S	3.19	3.11	2.92	2.64	2.69	2.70	2.89	2.88	2.78	3.07	2.75	2.91	2.80	2.71	2.86	2.86
w/o F	3.20	3.12	2.88	2.89	2.96	3.19	2.87	3.00	2.83	3.02	2.77	2.93	2.98	2.88	2.88	2.96

Table 4: Discovering importance of sources in Model level fusion on MFN regressors by ablating one source at a time.

Introduction	Methods	Instability Analysis	Ablation Test	Conclusion	References

Investigating importance of each source : Ablation Test

Table 4: Discovering importance of sources in Model level fusion on MFN regressors by ablating one source at a time.

Sources	AR	BO	CL	CR	CO	EC	GF	GT	HN	MX	NI	PA	PY	PE	SV	All
All	3.21	3.24	3.05	2.89	2.96	3.19	2.87	3.00	2.89	3.13	2.77	2.93	3.08	2.92	2.88	3.00
w/oW	2.91	2.99	2.77	2.71	2.61	2.59	2.66	2.69	2.49	2.78	2.62	2.87	2.60	2.43	2.67	2.69
w/o H	3.04	2.85	2.89	2.56	2.81	2.77	2.61	2.75	2.75	2.82	2.57	2.75	2.51	2.87	2.71	2.75
w/o T	2.92	3.14	2.95	2.61	2.72	2.81	2.88	2.79	2.61	2.93	2.74	2.63	2.79	2.74	2.81	2.80
w/oS	3.19	3.11	2.92	2.64	2.69	2.70	2.89	2.88	2.78	3.07	2.75	2.91	2.80	2.71	2.86	2.86
w/o F	3.20	3.12	2.88	2.89	2.96	3.19	2.87	3.00	2.83	3.02	2.77	2.93	2.98	2.88	2.88	2.96

- Greater drop in accuracy \implies Source more important
- Physical indicators are in general more important
- Still there is value in supplementing physical indicators with non-physical indicators.

ほん イヨル

Elect to .	ويتبلغ المحتر عرورا				
00000	0000000000000000			0000	
Introduction	Methods	Instability Analysis	Ablation Test	Conclusion	References

Final look at real time predictions

- Weekly predictions sent out for 15 Latin American countries
- Predictions publicly available at http://embers.cs.vt. edu/embers/alerts/ visualizer_isi

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction 00000	Methods 000000000000000000	Instability Analysis	Ablation Test	Conclusion ••••	References
Conclus	ion:				
How to	extend to oth	er sources			

Data about number of unreserved tables at restaurants in Mexico

Table 5: ILI case count prediction accuracy for Mexico using OpenTable data as a single source, and by combining it with all other sources using model level fusion on uncorrected ILI case count data.

Method	Lunch	Dinner	Lunch & Dinner
MF	1.92	2.23	2.31
NN	1.99	1.83	2.11
MFN	2.11	2.31	2.44
Model Fusion	2.96	2.87	2.99

イロト (局) (ヨト (ヨト ヨヨ ののの

Introduction 00000	Methods 0000000000000000000	Instability Analysis	Ablation Test	Conclusion ○●○○	References
Summar	y				

- MFN performs better than MF, NN on average over individual sources for predicting ILI case counts.
- In average there is a small advantage in combining models over different sources than to combine data.
- Employing information about number of samples used and how far from the actual date the estimate is being updated by the reporting agency, we have been able to improve our overall accuracy by a quality score of 0.05.
- Generally physical indicators offer more advantage over non-physical indicators. However for some situations Healthmap and Twitter feed have been found to outperform physical indicators.
- Experiments with Opentable reservation data shows that there is some perceptible signal embedded w.r.t to ILI case counts.

> = = • • • •

Introduction 00000	Methods 0000000000000000000	Instability Analysis	Ablation Test	Conclusion ○○●○	References
Future V	Vork				

- Reconcile these phenomenological models with true epidemiological models.
- Explore inter-country characteristics of ILI profiles.

Introduction 00000	Methods 0000000000000000000	Instability Analysis	Ablation Test	Conclusion ○○○●	References
Acknowl	edgements				

Supported by the Intelligence Advanced Research Projects Activity (IARPA) via Department of Interior National Business Center (Dol/NBC) contract number D12PC000337 and by the Defense Threat Reduction agency (DTRA) via the CNIMS Contract HDTRA1-11-D-0016-0001. The US Government is authorized to reproduce and distribute reprints of this work for Governmental purposes notwithstanding any copyright annotation thereon. Disclaimer: The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of IARPA, Dol/NBC, DTRA, or the US Government.

15	Instability Analysis	Ablation lest	Conclusion	References

Thanks!

-

Introduction	Methods	Instability Analysis	Ablation Test	Conclusion	References

Thanks!

Any questions?

글 > - < 글 >

Introduction 00000	Methods ೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦	Instability Analysis	Ablation Test	Conclusion 0000	References
Referenc	es				

- Prithwish Chakraborty et al. "Forecasting a Moving Target: Ensemble Models for ILI Case Count Predictions". In: Proceedings of the 2014 SIAM International Conference on Data Mining, Philadelphia, Pennsylvania, USA, April 24-26, 2014. 2014, pp. 262–270.
- Saurav Ghosh et al. "Forecasting Rare Disease Outbreaks with Spatio-temporal Topic Models". In: *NIPS 2013 workshop on Topic Models*. 2013.
- Yehuda Koren. "Factorization meets the neighborhood: a multifaceted collaborative filtering model". In: *Proceedings of KDD '08.* 2008, pp. 426–434.

김 국가 김 국가 구매적

Appendix: Physical Indicators Collection Framework

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ヨヨ のの⊙

Appendix: Accuracy of different methods for different countries

Figure 4: Accuracy of different methods for each country.

3 1
