Forecasting a Moving Target: Ensemble Models for ILI Case Count Predictions

Prithwish Chakraborty^{1,2}, Pejman Khadivi^{1,2}, Bryan Lewis³, Aravindan Mahendiran^{1,2}, Jiangzhuo Chen³, Patrick Butler^{1,2}, Elaine O. Nsoesie^{3,4,5}, Sumiko R. Mekaru^{4,5}, John S. Brownstein^{4,5}, Madhav V. Marathe³, Naren Ramakrishnan^{1,2}

¹Dept. of Computer Science, Virginia Tech, USA
 ²Discovery Analytics Center, Virginia Tech, USA
 ³NDSSL, Virginia Bioinformatics Institute, USA
 ⁴Children's Hopsital Informatics Program, Boston Children's Hopsital, USA
 ⁵Dept. of Pediatrics, Harvard Medical School, USA.

October 26, 2014

2/1 Prithwish Chakraborty (prithwi@vt.edu) Forecasting a Moving Target

Problem Overview

3/1 Prithwish Chakraborty (prithwi@vt.edu) Forecasting a Moving Target

《曰》 《聞》 《臣》 《臣》

E

- Predicting weekly Influenza-like-illness (ILI) case counts for 15 Latin American countries
- Investigating different open source data-streams as possible surrogate indicators of ILI

・ 同 ト ・ ヨ ト ・ ヨ ト

- Traditional methods are often not enough!!
 - ILI surveillance is not real-time often lags several weeks
 - Estimates are "unstable" often revised over several months

伺下 イヨト イヨ

.

- Traditional methods are often not enough!!
 - ILI surveillance is not real-time often lags several weeks
 - Estimates are "unstable" often revised over several months
- Can surrogate information be used to provide more stable and real time estimates?
 - Either "non-physical indicators" or "physical indicators" investigated

• How to handle the instability associated with ILI surveillance

 Real-time prospective study - most studies till now have been retrospective

글 눈 옷 글 눈

 Real-time prospective study - most studies till now have been retrospective

2 Integrates both social and physical indicators

- Real-time prospective study most studies till now have been retrospective
- **2** Integrates both social and physical indicators
- O Data level fusion vs Model level fusion?

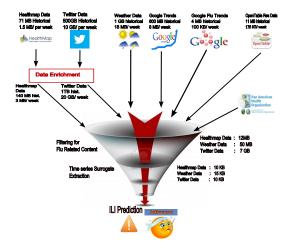
- Real-time prospective study most studies till now have been retrospective
- **2** Integrates both social and physical indicators
- **③** Data level fusion vs Model level fusion?
- Accounting for uncertainties in the official surveillance estimates

・ 同 ト ・ ヨ ト ・ ヨ ト

- Real-time prospective study most studies till now have been retrospective
- **2** Integrates both social and physical indicators
- **③** Data level fusion vs Model level fusion?
- Accounting for uncertainties in the official surveillance estimates
- **(3)** Investigate importance of different sources Ablation test

(4月) (4日) (4日)

Overall Framework



> < E</p>

() Google Flu Trends - uses unpublished set of keywords

< E

O Google Flu Trends - uses unpublished set of keywords

・ 同 ト ・ ヨ ト ・ ヨ ト

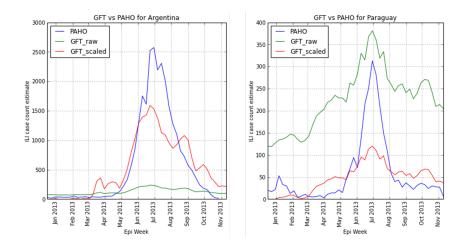
- ② Custom User Keywords
 - **0** Google Search Trends
 - Ø Healthmap News Feed
 - 8 Twitter Feed

O Google Flu Trends - uses unpublished set of keywords

▲ □ ▶ ▲ □ ▶ ▲ □

- ② Custom User Keywords
 - **0** Google Search Trends
 - Ø Healthmap News Feed
 - 8 Twitter Feed
- Physical indicators
- Misc. Indicators
 - Opentable reservations

Google Flu Trends



《曰》 《聞》 《臣》 《臣》

æ

- A multiple step process :
 - Started with a seed set of keywords from experts.
 - Seed set contains words in Spanish, Portuguese, and English.

• example : gripe (flu in Spanish)

A multiple step process :

- Started with a seed set of keywords from experts.
 - Seed set contains words in Spanish, Portuguese, and English.
 - example : gripe (flu in Spanish)
- Pseudo-query expansion
 - Crawled top 20 web-sites for each seed word.
 - Crawled "expert" web-sites e.g. CDC.
 - Crawled few other hand-picked sites.
 - Top 500 frequently occurring words selected.

A multiple step process :

- Started with a seed set of keywords from experts.
 - Seed set contains words in Spanish, Portuguese, and English.
 - example : gripe (flu in Spanish)
- Pseudo-query expansion
 - Crawled top 20 web-sites for each seed word.
 - Crawled "expert" web-sites e.g. CDC.
 - Crawled few other hand-picked sites.
 - Top 500 frequently occurring words selected.
- Time series correlation analysis
 - Used Google Correlate to find words with search history correlated with ILI incidence curve.

・ 同 ト ・ ヨ ト ・ ヨ ト

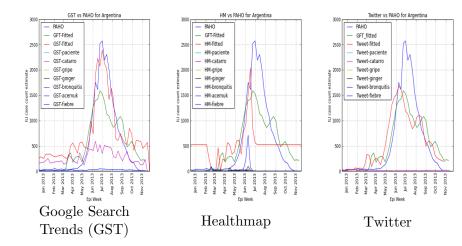
• Interesting words such as *ginger* and *Acemuk* found.

A multiple step process :

- Started with a seed set of keywords from experts.
 - Seed set contains words in Spanish, Portuguese, and English.
 - example : gripe (flu in Spanish)
- Pseudo-query expansion
 - Crawled top 20 web-sites for each seed word.
 - Crawled "expert" web-sites e.g. CDC.
 - Crawled few other hand-picked sites.
 - Top 500 frequently occurring words selected.
- Time series correlation analysis
 - Used Google Correlate to find words with search history correlated with ILI incidence curve.

- Interesting words such as *ginger* and *Acemuk* found.
- Final filtering : 114 words

GFT vs other non-physical indicators using custom keyword set

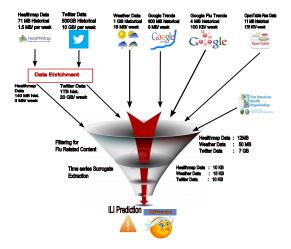


(日) (部) (王) (王)

E

- Meteorological data for every lat-long, worldwide, every 8 hours
- Humidity, Temperature, Rainfall
- Analyzing grid cells covering PAHO sites.

System framework once again!!



<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $\bullet\,$ To find predictive model f

$$f:\mathcal{P}_t=f\left(\mathcal{P},\mathcal{X}\right)$$

• Variable Setup

$$V_t \equiv \langle P_{t-\beta-\alpha}, \mathcal{X}_{t-\beta-\alpha}, P_{t+1-\beta-\alpha}, \mathcal{X}_{t+1-\beta-\alpha}, \dots, \\ P_{t-\alpha}, \mathcal{X}_{t-\alpha} \rangle \\ L_t \equiv P_t$$

- Parameters
 - α : the lookahead window length
 - β : the lookback window length

• Can find latent factors in the dataset.

・ 同 ト ・ ヨ ト ・ ヨ ト

Matrix Factorization (MF)

- Can find latent factors in the dataset.
- Model

$$\widehat{\mathcal{M}}_{i,j} = b_{u,i} + U_i^T F_j$$
$$b_{i,j} = \bar{\mathcal{M}} + b_j$$

★御▶ ★理▶ ★理▶

- Can find latent factors in the dataset.
- Model

$$\widehat{\mathcal{M}}_{i,j} = b_{u,i} + U_i^T F_j$$
$$b_{i,j} = \bar{\mathcal{M}} + b_j$$

• Fitting

$$b_{*}, F, U = \operatorname{argmin}\left(\sum_{i=1}^{m-1} \left(\mathcal{M}_{i,n} - \widehat{\mathcal{M}}_{i,n}\right)^{2} + \lambda_{1}\left(\sum_{j=1}^{n} b_{j}^{2} + \sum_{i=1}^{m-1} ||U_{i}||^{2} + \sum_{j=1}^{n} ||F_{j}||^{2}\right)\right)$$
(1)

★御▶ ★理▶ ★理▶

• Impose non-linearity.

3 × 4 3 ×

- Impose non-linearity.
- $\mathcal{N}(i) = \{k : V_k \text{ is one of the top K nearest neighbors of } V_i\}$

- Impose non-linearity.
- $\mathcal{N}(i) = \{k : V_k \text{ is one of the top K nearest neighbors of } V_i\}$
- Fitting

$$\widehat{P}_{T'} = \left(\sum_{k \in \mathcal{N}(T')} \theta_k L_{k,T-\alpha}\right) / \sum_{k=1}^{K} \theta_k$$
(2)

Matrix Factorization using Nearest Neighborhood (MFN)

• Inspired from Koren et al.'s work* in Recommender systems.

伺下 イヨト イヨト

Matrix Factorization using Nearest Neighborhood (MFN)

۲

• Inspired from Koren et al.'s work* in Recommender systems.

$$\widehat{\mathcal{M}}_{i,j} = b_{i,j} + U_i^T F_j + F_j |\mathcal{N}(i)|^{-\frac{1}{2}} \sum_{k \in N(i)} (\mathcal{M}_{i,k} - b_{i,k}) x_k$$
(3)

伺下 イヨト イヨト

Matrix Factorization using Nearest Neighborhood (MFN)

• Inspired from Koren et al.'s work* in Recommender systems.

$$\widehat{\mathcal{M}}_{i,j} = b_{i,j} + U_i^T F_j + F_j |\mathcal{N}(i)|^{-\frac{1}{2}} \sum_{k \in N(i)} (\mathcal{M}_{i,k} - b_{i,k}) x_k$$
(3)

• Fitting

۲

$$b_*, F, U, x_* = \operatorname{argmin}(\sum_{i=1}^{m-1} \left(\mathcal{M}_{i,n} - \widehat{\mathcal{M}}_{i,n} \right)^2 + \lambda_2 \left(\sum_{j=1}^n b_j^2 + \sum_{i=1}^{m-1} ||U_i||^2 + \sum_{j=1}^n ||F_j||^2 + \sum_k ||x_k||^2 \right)$$
(4)

* koren2008factor

• Quality Metric

$$\mathcal{A} = \frac{4}{N_p} \sum_{t=t_s}^{t_e} \left(1 - \frac{|P_t - \hat{P}_t|}{max(P_t, \hat{P}_t, 10)} \right)$$
(5)

→ < Ξ >

Model	Sources	AR	BO	CL	CR	CO	EC	GF	GT	HN	MX	NI	PA	PY	PE	SV	All
	W	2.78	2.46	2.39	2.14	2.70	2.22	2.12	2.63	2.52	2.73	2.31	2.21	2.49	2.77	2.61	2.47
	н	2.81	2.31	2.22	1.92	2.43	2.04	2.11	2.57	2.33	2.48	2.39	2.15	2.18	2.47	2.33	2.32
MF	τ	2.37	2.35	2.18	2.03	2.21	2.12	1.83	2.12	2.29	2.03	1.89	2.06	1.96	2.20	2.21	2.12
	F	2.34	2.11	2.29	N/A	N/A	N/A	N/A	N/A	N/A	2.71	N/A	N/A	2.31	2.24	N/A	2.33
	S	2.48	2.21	2.33	2.04	2.31	2.21	1.93	2.03	2.15	2.51	2.42	2.52	2.33	1.93	2.30	2.24
	W	2.92	2.93	2.63	2.52	2.66	2.51	2.71	2.82	2.59	2.62	2.55	2.59	2.61	2.80	2.52	2.66
	H	2.73	3.10	2.42	2.27	2.83	2.64	2.43	2.25	2.71	2.31	2.61	2.35	2.43	2.39	2.52	2.53
NN	τ	2.72	2.86	2.31	2.62	2.77	2.52	2.71	2.66	2.51	2.44	2.13	2.01	1.77	2.51	2.20	2.45
	F	2.11	2.21	2.33	N/A	N/A	N/A	N/A	N/A	N/A	2.19	N/A	N/A	2.41	2.32	N/A	2.26
	S	2.51	2.31	2.41	1.81	2.52	2.41	2.12	2.29	2.51	2.13	2.61	2.14	2.51	1.87	2.12	2.28
	w	2.99	3.01	2.88	2.53	2.78	2.81	2.77	2.83	2.61	2.70	2.56	2.66	2.82	2.79	2.51	2.75
	\mathcal{H}	2.81	3.13	2.63	2.58	2.91	2.77	2.57	2.63	2.73	2.50	2.61	2.54	2.51	2.69	2.61	2.68
MFN	τ	2.74	3.03	2.51	2.64	2.83	2.51	2.81	2.71	2.60	2.48	2.13	2.55	2.19	2.57	2.31	2.57
1	F	2.33	2.41	2.34	N/A	N/A	N/A	N/A	N/A	N/A	2.69	N/A	N/A	2.54	2.48	N/A	2.46
	S	2.61	2.44	2.55	2.22	2.61	2.52	2.71	2.31	2.62	2.48	2.61	2.31	2.53	2.23	2.13	2.46

(日) (四) (三) (三) (三)

E

Table 1: Comparing forecasting accuracy of models using individual sources. Scores in this and other tables are normalized to [0,4] so that 4 is the most accurate.

Model	Sources	AR	BO	CL	CR	CO	EC	GF	GT	HN	MX	NI	PA	PY	PE	SV	All
	W	2.78	2.46	2.39	2.14	2.70	2.22	2.12	2.63	2.52	2.73	2.31	2.21	2.49	2.77	2.61	2.47
	H	2.81	2.31	2.22	1.92	2.43	2.04	2.11	2.57	2.33	2.48	2.39	2.15	2.18	2.47	2.33	2.32
MF	τ	2.37	2.35	2.18	2.03	2.21	2.12	1.83	2.12	2.29	2.03	1.89	2.06	1.96	2.20	2.21	2.12
	F	2.34	2.11	2.29	N/A	N/A	N/A	N/A	N/A	N/A	2.71	N/A	N/A	2.31	2.24	N/A	2.33
	S	2.48	2.21	2.33	2.04	2.31	2.21	1.93	2.03	2.15	2.51	2.42	2.52	2.33	1.93	2.30	2.24
	W	2.92	2.93	2.63	2.52	2.66	2.51	2.71	2.82	2.59	2.62	2.55	2.59	2.61	2.80	2.52	2.66
	H	2.73	3.10	2.42	2.27	2.83	2.64	2.43	2.25	2.71	2.31	2.61	2.35	2.43	2.39	2.52	2.53
NN	τ	2.72	2.86	2.31	2.62	2.77	2.52	2.71	2.66	2.51	2.44	2.13	2.01	1.77	2.51	2.20	2.45
	F	2.11	2.21	2.33	N/A	N/A	N/A	N/A	N/A	N/A	2.19	N/A	N/A	2.41	2.32	N/A	2.26
	S	2.51	2.31	2.41	1.81	2.52	2.41	2.12	2.29	2.51	2.13	2.61	2.14	2.51	1.87	2.12	2.28
	w	2.99	3.01	2.88	2.53	2.78	2.81	2.77	2.83	2.61	2.70	2.56	2.66	2.82	2.79	2.51	2.75
	\mathcal{H}	2.81	3.13	2.63	2.58	2.91	2.77	2.57	2.63	2.73	2.50	2.61	2.54	2.51	2.69	2.61	2.68
MFN	τ	2.74	3.03	2.51	2.64	2.83	2.51	2.81	2.71	2.60	2.48	2.13	2.55	2.19	2.57	2.31	2.57
1	F	2.33	2.41	2.34	N/A	N/A	N/A	N/A	N/A	N/A	2.69	N/A	N/A	2.54	2.48	N/A	2.46
	S	2.61	2.44	2.55	2.22	2.61	2.52	2.71	2.31	2.62	2.48	2.61	2.31	2.53	2.23	2.13	2.46

Table 1: Comparing forecasting accuracy of models using individual sources. Scores in this and other tables are normalized to [0,4] so that 4 is the most accurate.

- On average, MFN has better performance over MF and NN
- In Mexico, MF has the best accuracy possibly because the 2013 ILI season in Mexico was late by a few weeks than in usual.

< ロト < 同ト < ヨト < ヨト

• Output from models combined based on historical accuracy.

- 4 聞 と 4 速 と 4 速 と

E

- Output from models combined based on historical accuracy.
- Model

$${}_{C}\mathcal{M}_{t} = \left[\begin{array}{ccc} {}_{1}\widehat{P}_{t} & \dots & {}_{C}\widehat{P}_{t} & P_{t} \end{array}\right]$$
(6)

- 4 聞 と 4 速 と 4 速 と

E

- Output from models combined based on historical accuracy.
- Model ${}_{C}\mathcal{M}_{t} = \left[\begin{array}{ccc} {}_{1}\widehat{P}_{t} & \dots & {}_{C}\widehat{P}_{t} & P_{t} \end{array}\right]$ (6)
- Fitting

$$C\widehat{\mathcal{M}}_{i,j} = \mu_i + {}_C b_j + {}_C U_i^T {}_C F_j + {}_C F_j |_C \mathcal{N}(i)|^{-\frac{1}{2}} \sum_{k \in {}_C N(i)} ({}_C \mathcal{M}_{i,k} - \mu_i + {}_C b_k) {}_C x_k$$
(7)

• Feature vector is a tuple over all data set features.

$$\mathcal{X}_t = \langle \mathcal{T}_t, \mathcal{W}_t \rangle$$

伺下 イヨト イヨト

• Use MFN to fit the value

Fusion Level	AR	во	CL	CR	CO	EC	GF	GT	HN	MX	NI	PA	PY	PE	sv	All
Model	3.12	3.22	3.03	2.88	2.98	3.13	2.87	2.99	2.87	3.00	2.77	2.82	2.81	2.92	2.87	2.95
Data	3.01	2.97	3.13	2.87	2.86	3.04	2.91	2.88	2.72	2.89	2.70	2.60	2.88	2.81	2.92	2.88

<ロト <問ト < 回ト < 回ト

Table 2: Comparison of prediction accuracy while combining all data sources and using MFN regression.

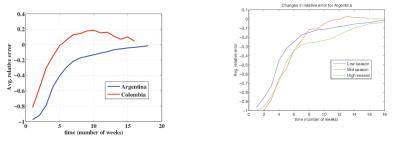
Fusion Level	AR	во	CL	CR	CO	EC	GF	GT	HN	MX	NI	PA	PY	PE	sv	All
Model	3.12	3.22	3.03	2.88	2.98	3.13	2.87	2.99	2.87	3.00	2.77	2.82	2.81	2.92	2.87	2.95
Data	3.01	2.97	3.13	2.87	2.86	3.04	2.91	2.88	2.72	2.89	2.70	2.60	2.88	2.81	2.92	2.88

Table 2: Comparison of prediction accuracy while combining all data sources and using MFN regression.

- On average, model level fusion produces better accuracy than data level fusion.
- Interesting deviations like Chile and El Salvador indicates that a possible strategy could be a mix of data level and model fusion however complexity of training will increase manifold.

Uncertainty in official estimates

• Can take up to several months to stabilize.



• Average relative error of PAHO count values with respect to stable values. (a) Comparison between Argentina and Colombia (b) Comparison between different seasons for Argentina.

▲ □ ▶ < □ ▶</p>

- Recognize high, low and mid-season months for countries.
- Variable setup

$$\mathcal{P}_{A}{}^{S} = \left\{ (1, P_{i}^{(1)}, \dot{P}_{i}, N_{i}^{(1)}), ..., (m, P_{i}^{(m)}, \dot{P}_{i}, N_{i}^{(m)}), ... \right\}$$

• Correction Model

$$\hat{P}_i^{(m)} = a_0 + a_1 m + a_2 P_i^{(m)} + a_3 N_i^{(m)}$$
(8)

- Recognize high, low and mid-season months for countries.
- Variable setup

$$\mathcal{P}_{A}{}^{S} = \left\{ (1, P_{i}^{(1)}, \dot{P}_{i}, N_{i}^{(1)}), ..., (m, P_{i}^{(m)}, \dot{P}_{i}, N_{i}^{(m)}), ... \right\}$$

• Correction Model

$$\hat{\dot{P}}_i^{(m)} = a_0 + a_1 m + a_2 P_i^{(m)} + a_3 N_i^{(m)}$$
(8)

Table 3: Comparison of prediction accuracy while using model level fusion on MFN regressors and employing PAHO stabilization.

Correction Method	AR	BO	CL	CR	CO	EC	GF	GT	HN	MX	NI	PA	PY	PE	sv	All
L																
None	3.12	3.22	3.03	2.88	2.98	3.13	2.87	2.99	2.87	3.00	2.77	2.82	2.81	2.92	2.87	2.95
Weeks Ahead	3.15	3.24	3.04	2.87	2.97	3.17	2.87	2.99	2.88	3.05	2.77	2.91	3.02	2.91	2.88	2.98
Num. samples	3.20	3.24	3.03	2.88	2.96	3.12	2.87	3.01	2.89	3.12	2.78	2.92	3.04	2.91	2.87	2.99
Combined	3.21	3.24	3.05	2.89	2.96	3.19	2.88	3.00	2.89	3.13	2.77	2.93	3.08	2.92	2.88	3.00

	Sources	AR	во	CL	OR	00	EC	GF	GT	HIN	MA	INI	PA	PY	PE	SV	All
Ē	All	3.21	3.24	3.05	2.89	2.96	3.19	2.87	3.00	2.89	3.13	2.77	2.93	3.08	2.92	2.88	3.00
	w/o W	2.91	2.99	2.77	2.71	2.61	2.59	2.66	2.69	2.49	2.78	2.62	2.87	2.60	2.43	2.67	2.69
	w/o H	3.04	2.85	2.89	2.56	2.81	2.77	2.61	2.75	2.75	2.82	2.57	2.75	2.51	2.87	2.71	2.75
	w/o T	2.92	3.14	2.95	2.61	2.72	2.81	2.88	2.79	2.61	2.93	2.74	2.63	2.79	2.74	2.81	2.80
	w/o S	3.19	3.11	2.92	2.64	2.69	2.70	2.89	2.88	2.78	3.07	2.75	2.91	2.80	2.71	2.86	2.86
	w/o F	3.20	3.12	2.88	2.89	2.96	3.19	2.87	3.00	2.83	3.02	2.77	2.93	2.98	2.88	2.88	2.96

< ロト < 同ト < ヨト < ヨト

Table 4: Discovering importance of sources in Model level fusion on MFN regressors by ablating one source at a time.