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Problem Overview

Predicting weekly Influenza-like-illness (ILI) case counts for
15 Latin American countries

Investigating different open source data-streams as possible
surrogate indicators of ILI
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Motivation

Traditional methods are often not enough!!

ILI surveillance is not real-time - often lags several weeks
Estimates are “unstable” - often revised over several months

Can surrogate information be used to provide more stable
and real time estimates?

Either “non-physical indicators” or “physical indicators”
investigated
How to handle the instability associated with ILI
surveillance

.
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Key Contributions

1 Real-time prospective study - most studies till now have
been retrospective

2 Integrates both social and physical indicators

3 Data level fusion vs Model level fusion?

4 Accounting for uncertainties in the official surveillance
estimates

5 Investigate importance of different sources - Ablation test

5 / 1 Prithwish Chakraborty (prithwi@vt.edu) Forecasting a Moving Target



Key Contributions

1 Real-time prospective study - most studies till now have
been retrospective

2 Integrates both social and physical indicators

3 Data level fusion vs Model level fusion?

4 Accounting for uncertainties in the official surveillance
estimates

5 Investigate importance of different sources - Ablation test

5 / 1 Prithwish Chakraborty (prithwi@vt.edu) Forecasting a Moving Target



Key Contributions

1 Real-time prospective study - most studies till now have
been retrospective

2 Integrates both social and physical indicators

3 Data level fusion vs Model level fusion?

4 Accounting for uncertainties in the official surveillance
estimates

5 Investigate importance of different sources - Ablation test

5 / 1 Prithwish Chakraborty (prithwi@vt.edu) Forecasting a Moving Target



Key Contributions

1 Real-time prospective study - most studies till now have
been retrospective

2 Integrates both social and physical indicators

3 Data level fusion vs Model level fusion?

4 Accounting for uncertainties in the official surveillance
estimates

5 Investigate importance of different sources - Ablation test

5 / 1 Prithwish Chakraborty (prithwi@vt.edu) Forecasting a Moving Target



Key Contributions

1 Real-time prospective study - most studies till now have
been retrospective

2 Integrates both social and physical indicators

3 Data level fusion vs Model level fusion?

4 Accounting for uncertainties in the official surveillance
estimates

5 Investigate importance of different sources - Ablation test

5 / 1 Prithwish Chakraborty (prithwi@vt.edu) Forecasting a Moving Target



Overall Framework
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Data Sources

Non-physical indicators

1 Google Flu Trends - uses unpublished set of keywords
2 Custom User Keywords

1 Google Search Trends
2 Healthmap News Feed
3 Twitter Feed

Physical indicators

Misc. Indicators
1 Opentable reservations
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Google Flu Trends
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Finding Custom user keyword dictionary

A multiple step process :

Started with a seed set of keywords from experts.

Seed set contains words in Spanish, Portuguese, and
English.
example : gripe (flu in Spanish)

Pseudo-query expansion

Crawled top 20 web-sites for each seed word.
Crawled “expert” web-sites e.g. CDC.
Crawled few other hand-picked sites.
Top 500 frequently occurring words selected.

Time series correlation analysis

Used Google Correlate to find words with search history
correlated with ILI incidence curve.
Interesting words such as ginger and Acemuk found.

Final filtering : 114 words
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GFT vs other non-physical indicators using custom keyword set

Google Search
Trends (GST)

Healthmap Twitter
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Physical Indicators

Meteorological data for
every lat-long, worldwide,
every 8 hours

Humidity, Temperature,
Rainfall

Analyzing grid cells
covering PAHO sites.
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System framework once again!!
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Preliminaries

To find predictive modelf

f : Pt = f (P,X )
Variable Setup

Vt ≡ 〈Pt−β−α,Xt−β−α, Pt+1−β−α,Xt+1−β−α, . . . ,
Pt−α,Xt−α〉

Lt ≡ Pt

Parameters

α : the lookahead window length
β : the lookback window length
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Matrix Factorization (MF)

Can find latent factors in the dataset.

Model
M̂i,j = bu,i + UTi Fj
bi,j = M̄+ bj

Fitting

b∗, F, U = argmin(
m−1∑
i=1

(
Mi,n − M̂i,n

)2
+λ1(

n∑
j=1

b2j +
m−1∑
i=1
||Ui||2 +

n∑
j=1
||Fj ||2))

(1)
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Nearest Neighbor model (NN)

Impose non-linearity.

N (i) = {k : Vk is one of the top K nearest neighbors of Vi}
Fitting

P̂T ′ = (
∑

k∈N (T ′)

θkLk,T−α)/
K∑
k=1

θk (2)
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Matrix Factorization using Nearest Neighborhood
(MFN)

Inspired from Koren et al.’s work∗ in Recommender systems.

M̂i,j = bi,j + UT
i Fj

+Fj |N (i)|− 1
2

∑
k∈N(i)(Mi,k − bi,k)xk

(3)

Fitting

b∗, F, U, x∗ = argmin(
m−1∑
i=1

(
Mi,n − M̂i,n

)2
+λ2(

n∑
j=1

b2j +
m−1∑
i=1

||Ui||2 +
n∑

j=1

||Fj ||2 +
∑
k

||xk||2))
(4)

∗ koren2008factor
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Accuracy comparison

Quality Metric

A =
4

Np

te∑
t=ts

(
1− |Pt − P̂t|

max(Pt, P̂t, 10)

)
(5)
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Accuracy comparison

On average, MFN has better performance over MF and NN

In Mexico, MF has the best accuracy - possibly because the 2013
ILI season in Mexico was late by a few weeks than in usual.
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Model level fusion

Output from models combined based on historical
accuracy.

Model

CMt =
[

1P̂t . . . C P̂t Pt

]
(6)

Fitting

CM̂i,j = µi + Cbj + CU
T
i CFj

+CFj |CN (i)|−
1
2
∑

k∈CN(i)(CMi,k − µi + Cbk)Cxk
(7)
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Data level fusion

Feature vector is a tuple over all data set features.

Xt = 〈Tt,Wt〉

Use MFN to fit the value
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Accuracy comparison

On average, model level fusion produces better accuracy than
data level fusion.

Interesting deviations like Chile and El Salvador indicates that a
possible strategy could be a mix of data level and model fusion -
however complexity of training will increase manifold.
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Uncertainty in official estimates

Can take up to several months to stabilize.

Average relative error of PAHO count values with respect
to stable values. (a) Comparison between Argentina and
Colombia (b) Comparison between different seasons for
Argentina.
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Correcting uncertainty

Recognize high, low and mid-season months for countries.

Variable setup

PA
S =

{
(1, P

(1)
i , Ṗi, N

(1)
i ), ..., (m,P

(m)
i , Ṗi, N

(m)
i ), ...

}
Correction Model

ˆ̇P
(m)
i = a0 + a1m+ a2P

(m)
i + a3N

(m)
i (8)
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i , Ṗi, N

(1)
i ), ..., (m,P

(m)
i , Ṗi, N
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Investigating importance of each source : Ablation Test

Greater drop in accuracy =⇒ Source more important

Physical indicators are in general more important

Still there is value in supplementing physical indicators with
non-physical indicators.
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