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Problem Overview




Problem Overview

o Predicting weekly Influenza-like-illness (ILI) case counts for
15 Latin American countries

o Investigating different open source data-streams as possible
surrogate indicators of ILI
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Motivation

o Traditional methods are often not enough!!

o ILI surveillance is not real-time - often lags several weeks
o Estimates are “unstable” - often revised over several months
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Motivation

o Traditional methods are often not enough!!
o ILI surveillance is not real-time - often lags several weeks
o Estimates are “unstable” - often revised over several months
o Can surrogate information be used to provide more stable
and real time estimates?
o Either “non-physical indicators” or “physical indicators”
investigated
o How to handle the instability associated with ILI
surveillance
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Key Contributions

@ Real-time prospective study - most studies till now have
been retrospective




Key Contributions

@ Real-time prospective study - most studies till now have
been retrospective

@ Integrates both social and physical indicators

Prithwish Chakraborty (prithwi@vt.edu) Forecasting a Moving Target



Key Contributions

@ Real-time prospective study - most studies till now have
been retrospective

@ Integrates both social and physical indicators

@ Data level fusion vs Model level fusion?
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Key Contributions

@ Real-time prospective study - most studies till now have
been retrospective

@ Integrates both social and physical indicators
@ Data level fusion vs Model level fusion?

@ Accounting for uncertainties in the official surveillance
estimates
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Key Contributions

@ Real-time prospective study - most studies till now have
been retrospective

@ Integrates both social and physical indicators
@ Data level fusion vs Model level fusion?

@ Accounting for uncertainties in the official surveillance
estimates

@ Investigate importance of different sources - Ablation test
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Overall Framework
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@ Non-physical indicators
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@ Non-physical indicators
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Data Sources

@ Non-physical indicators

@ Google Flu Trends - uses unpublished set of keywords
@ Custom User Keywords

@ Google Search Trends

® Healthmap News Feed

@ Twitter Feed
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Data Sources

@ Non-physical indicators

@ Google Flu Trends - uses unpublished set of keywords
@ Custom User Keywords

@ Google Search Trends
® Healthmap News Feed
@ Twitter Feed

o Physical indicators
o Misc. Indicators
@ Opentable reservations
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Finding Custom user keyword dictionary

A multiple step process :
o Started with a seed set of keywords from experts.

e Seed set contains words in Spanish, Portuguese, and
English.
o example : gripe (flu in Spanish)
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Finding Custom user keyword dictionary

A multiple step process :
o Started with a seed set of keywords from experts.
e Seed set contains words in Spanish, Portuguese, and
English.
o example : gripe (flu in Spanish)
o Pseudo-query expansion

Crawled top 20 web-sites for each seed word.
Crawled “expert” web-sites e.g. CDC.
Crawled few other hand-picked sites.

Top 500 frequently occurring words selected.
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Finding Custom user keyword dictionary

A multiple step process :
o Started with a seed set of keywords from experts.
e Seed set contains words in Spanish, Portuguese, and
English.
o example : gripe (flu in Spanish)
o Pseudo-query expansion

Crawled top 20 web-sites for each seed word.
Crawled “expert” web-sites e.g. CDC.
Crawled few other hand-picked sites.

Top 500 frequently occurring words selected.

o Time series correlation analysis
e Used Google Correlate to find words with search history
correlated with ILI incidence curve.
o Interesting words such as ginger and Acemuk found.
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Finding Custom user keyword dictionary

A multiple step process :
o Started with a seed set of keywords from experts.
e Seed set contains words in Spanish, Portuguese, and
English.
o example : gripe (flu in Spanish)
o Pseudo-query expansion
Crawled top 20 web-sites for each seed word.
Crawled “expert” web-sites e.g. CDC.
Crawled few other hand-picked sites.
Top 500 frequently occurring words selected.

o Time series correlation analysis

e Used Google Correlate to find words with search history
correlated with ILI incidence curve.
o Interesting words such as ginger and Acemuk found.

o Final filtering : 114 words
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GFT vs other non-physical indicators using custom keyword set
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Physical Indicators

o Meteorological data for
every lat-long, worldwide,
every 8 hours

o Humidity, Temperature,
Rainfall

@ Analyzing grid cells
covering PAHO sites.
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again!!

System framework once
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Preliminaries

o To find predictive model f

fiPe=[f(P,X)
e Variable Setup

‘/t = <Pt—,8—ou Xt—,@—on Pt-l—l—ﬂ—ou Xt—f—l—,ﬁ—a» cee
Pt—om Xt—a)
Lt = Pt

o Parameters

o « : the lookahead window length
o [ : the lookback window length
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Matrix Factorization (MF)

e Can find latent factors in the dataset.
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Matrix Factorization (MF)

e Can find latent factors in the dataset.
o Model -
Mij = bui+ Ul'F;
b@j =M+ bj
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Matrix Factorization (MF)

e Can find latent factors in the dataset.

o Model -
M ; :_buﬂ' + UlTFJ
b@j =M+ bj
o Fitting
m—1 — 2
by, F,U = argmin( > (Mm — Mm)
i=1
n 9 m—1 9 n 9 (1)
A (22 b+ X0 U1° + X [[F1%))
=1 i=1 j=1
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Nearest Neighbor model (NN)

o Impose non-linearity.
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Nearest Neighbor model (NN)

o Impose non-linearity.
e N (i) = {k : Vj is one of the top K nearest neighbors of V;}
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Nearest Neighbor model (NN)

o Impose non-linearity.
e N (i) = {k : Vj is one of the top K nearest neighbors of V;}
o Fitting

. K
Pr=( % 6Llir—a)/> Ok (2)
keN(T') k=1
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Matrix Factorization using Nearest Neighborhood

(MFN)

o Inspired from Koren et al.’s work® in Recommender systems.
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Matrix Factorization using Nearest Neighborhood

(MFN)

o Inspired from Koren et al.’s work® in Recommender systems.

o
M ;= bi; +UlF;
N —L
+Fj|N(Z)| 2 ZkeN(i) (Mz’,k - bi,k)xk
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Matrix Factorization using Nearest Neighborhood

(MFN)

@ Inspired from Koren et al.’s work™ in Recommender systems.

°
Mi,j = bi,j + UiTFj
1

+FIN(9)] 2 ZkeN(i) (Mg = bi )z

o Fitting
m—1 o 2
by, F,U, z, = argmin( > <M1n - Mln)

n 5 m—1 121 n 5 5 (4)
(L B+ T IR + 3 5P+l 2)
j= i= Jj=

* koren2008factor
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Accuracy comparison

o Quality Metric

A:4i 1_ |Pt_Pt’ (5)
Ny Py maz (P, P, 10)
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Accuracy comparison

Table 1: Comparing forecasting accuracy of models using individual sources. Scores in this and other tables are normalized to [0,4] so that

4 is the most accurate.
Model | Sources | AR | BO 3 = T GT | ON NI PY SV [ Al )
W 278 | 246 | 2. 212 | 2.63 | 252 231 2.49 2.61 | 247
H 2.81 2.57 | 2.33 2.39 2.18 2.33 | 2.32
MF T 2.37 2.20 1.89 1.96 2.21 | 212
F 2.34 N/A N/A 2.31 N/A | 2.33
s 2.48 2.15 2.42 2.33 2.30 | 2.24
W 202 259 255 261 252 | 2.66
H 273 2.71 2.61 2.43 252 | 2.53
NN T 2.72 2.51 2.13 1.77 220 | 2.45
F 2.11 N/A N/A 2.41 N/A | 2.26
s 2.51 251 2.61 2.51 212 | 2.28
W 2.99 2.61 2.56 | 2.66 | 2.82 251 | 2.75
H 2.81 2.73 2.61 | 251 2.61 | 268
MFN T 2.74 2.60 2.13 2.19 2.31 | 257
F 2.33 N/A N/A 2.54 N/A | 2.6
S 2.61 2.62 2.61 2.53 2.13 | 246




Accuracy comparison

Table 1: Comparing forecasting accuracy of models using individual sources. Scores in this and other tables are normalized to [0,4] so that
4 is the most accurate.

Model | Sources | AR CL [ CR [ CO | BC [ GF | GT | AN SV [ Al )
W 278 239 | 214 | 2.70 | 2.22 | 212 | 2.63 | 2.62 2.61 | 247
H 2.81 2.22 | 1.92 | 243 | 2.04 | 211 | 2.57 | 2.33 2.33 | 2.32
MF T 2.37 218 | 2.03 | 221 | 212 | 183 2.20 2.21 | 212
F 2.34 229 | N/A | N/A | N/A | N/A N/A N/A | 2.33
s 2.48 2.04 | 231 | 221 | 1.93 2.15 2.30
W 202 252 | 2.66 | 251 | 2.71 259 252
H 2.73 227 | 2.83 | 264 | 2.43 2.71 2.52
NN T 2.72 2.31 | 2.62 | 277 | 2.52 | 271 2.51 2.20 | 2.4
F 2.11 2.33 | N/A | N/A | N/A | N/A N/A N/A | 2.26
s 2.51 241 | 181 | 252 | 241 | 212 251 212 | 2.28
W 2.99 2.88 | 253 | 2.8 | 2.81 | 2.77 2.61 251 | 2.75
H 2.58 | 291 | 277 | 2.57 2.73 2.61 | 268
MFN T 2.64 | 283 | 251 | 2.81 2.60 2.31 | 257
F 3 N/A | N/A | N/A | N/A N/A N/A | 2.46
S 2.61 2.22 | 261 | 252 | 2.7 2.62 2.13 | 246

@ On average, MFN has better performance over MF and NN

@ In Mexico, MF has the best accuracy - possibly because the 2013
ILI season in Mexico was late by a few weeks than in usual.




Model level fusion

o Output from models combined based on historical
accuracy.




Model level fusion

o Output from models combined based on historical
accuracy.

o Model
cMy=| 1P ... cP P (6)
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Model level fusion

o Output from models combined based on historical
accuracy.

o Model
cMy=| 1P ... cP P (6)
o Fitting

Mg = pi+ clbj + Ul cFj
+eFleN ()72 Xreon(eMik — i + cbi) ok
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Data level fusion

o Feature vector is a tuple over all data set features.
Xt = <7;a Wt>

o Use MFN to fit the value
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Accuracy comparison

Table 2: Comparison of prediction accuracy while combining all data sourc

and using MFN regression

Fusion AR BO CL CR CO EC GF G HN MX NI PA PY PE SV All
Level

Model 312 [ 3.22 | 3.03 | 2.88 [ 2.98 | 3.13 | 2.87 | 2.99 | 2.87 | 3.00 | 2.77 | 2.82 | 2.81 | 2.92 | 2.87 | 2.95
Data 3.01 | 297 | 8.18 | 2.87 | 2.86 | 3.04 | 2.91 | 2.88 | 272 | 2.89 | 270 | 2.60 | 2.88 | 2.81 | 2.92 | 2.88




Accuracy comparison

Table 2: Comparison of prediction accuracy while combining all data sources and using MFN regression

Fusion AR BO CL CR cO EC GF GT HN MX NI PA PY PE SV All
Level

Model 312 [ 3.22 | 3.03 | 2.88 [ 2.98 | 3.13 | 2.87 | 2.99 | 2.87 | 3.00 | 2.77 | 2.82 | 2.81 | 2.92 | 2.87 | 2.95
Data 3.01 | 297 | 8.18 | 2.87 | 2.86 | 3.04 | 2.91 | 2.88 | 272 | 2.89 | 270 | 2.60 | 2.88 | 2.81 | 2.92 | 2.88

@ On average, model level fusion produces better accuracy than
data level fusion.

o Interesting deviations like Chile and El Salvador indicates that a
possible strategy could be a mix of data level and model fusion -
however complexity of training will increase manifold.
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Uncertainty in official estimates

e Can take up to several months to stabilize.

Changes in relative arror for Argantina

o
0.4
o —
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o Average relative error of PAHO count values with respect
to stable values. (a) Comparison between Argentina and
Colombia (b) Comparison between different seasons for
Argentina.




Correcting uncertainty

@ Recognize high, low and mid-season months for countries.

@ Variable setup

LS = {(1,p§1>,Pi,N§”), oy (m, PU™ P NG, }

@ Correction Model

P™ =g+ aym + a; P™ 4 agN™ (8)

?
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Correcting uncertainty

@ Recognize high, low and mid-season months for countries.

@ Variable setup

PAS = {(Lpz(l)?PlaNz(l))a ) (m7Pz(m)vP17Nz(m))a }

@ Correction Model

P = ap +arm + ang-(m) + CL3N1v(m) (8)

?

Table 3: Comparison of prediction accuracy while using model level fusion on MFN and employing PAHO st
Correction | AR | BO | CL | OR | CO | EC | GF | GT | HN | MX | NI PA [ PY | PE | SV AT
Method
None 312 | 322 | 3.03 | 2.88 | 2.98 | 3.13 | 2.87 | 2.00 | 2.87 | 3.00 | 2.77 | 2.82 | 281 | 2.92 | 2.87 | 2.95
Weeks 315 | 3.24 | 3.04 | 287 | 2.07 | 3.17 | 2.87 | 209 | 2.88 | 3.05 | 2.77 | 201 | 3.02 | 201 | 2.88 | 2.98
Ahead
Num 320 | 3.24 | 3.03 | 2.88 | 2.96 | 3.12 | 2.87 | 3.01 | 2.89 | 3.12 | 2.78 | 2.02 | 3.04 | 201 | 2.87 | 2.99

samples
Combined | 3.21 | 3.24 | 3.05 | 2.80 | 2.06 | 3.10 | 2.88 | 3.00 | 2.89 | 3.13 | 2.77 | 2.93 | 3.08 | 2.02 | 2.88 | 3.00
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Investigating importance of each source : Ablation Test

Table 4: Discovering importance of sources in Model level fusion on MEN regressors by ablating one source at a time.

[“Sources AR BO CL CR cO EC GF GT MX NI PA PE
All 3.21 3.05 2.96 | 3.19 3.00 3.13 2.93
w/oWw | 291 2.61 | 2.59 2.69 2.87
wjoH | 3.04 281 | 2.77 2.75 2.75
w/o T | 2.92 261 | 2.72 | 2.81 2.79 2.63
w/o S | 3.19 2 2,64 | 2.69 | 2.70 2.88 2.91
w/o F 3.20 2.88 2.89 | 2.96 | 3.19 3.00 2.93




