Dynamic Poisson Autoregression for Influenza-Like-Illness Case Count Prediction

Zheng Wang¹, Prithwish Chakraborty², Sumiko R. Mekaru³, John S. Brownstein³, Jieping Ye¹ and Naren Ramakrishnan²

¹University of Michigan, Ann Arbor ²Virginia Tech ³Boston Children's Hospital, Harvard Medical School

August 13, 2015 @ KDD 2015, Sydney, Australia

Outline

Introduction

- Influenza-Like-Illness (ILI) case count prediction
- Key contributions
- Methodology: formulation and solution
 - Dynamic ARX model
 - Dynamic Poisson ARX model
- Experiments
- Conclusion

Influenza-Like-Illness (ILI) Case Count

- Seasonal influenza regularly affects the global population
- Epidemic diseases forecasting and surveillance
- Case count (#ILI): doctor visit
- Calibrated #ILI over #week

Argentina

ILI Case Count Prediction

- Long term prediction
 - Season-wise prediction
 - Target: starting time, ending time, peak value, peak time

- Short term prediction
 - Point-wise prediction
 - Target: values for next few time points

Future value

ILI Forecast with Indicator Data

M

The figure is cited from P. Chakraborty et al. Forecasting a moving target: Ensemble models for ILI case count predictions. SDM '14, 2014.

Indicator Data Source

• Weather: temperature, humidity

- Social media text data: Twitter, Google search trends(GST)
- Domain data: Paho/CDC (history record), Google flu trends (GFT), HealthMap
- Others: OpenTables ...
- Goal: multi-step ILI case count forecasting

Key Contributions

- New dynamic time series prediction model
- Dynamic Poisson ARX model for count data
- Efficient solution with block coordinate descent
- Applicable to other time series forecasting problems

ARX Model

Autoregressive model with exogenous input

$$y_{t} = \sum_{i=1}^{p} \alpha_{i} y_{t-i} + \sum_{i=0}^{b} \beta_{i}^{T} \mathbf{x}_{t-d-i} + \varepsilon_{t} + \varepsilon_{t}$$

order p with input lag d

indicator data as the (mutli-dimensional) exogenous input

ARX Model

$$y_{t} = \sum_{i=1}^{p} \alpha_{i} y_{t-i} + \sum_{i=0}^{b} \beta_{i}^{T} \mathbf{x}_{t-d-i} + \varepsilon_{t} + c$$
$$\mathbf{w} = \begin{bmatrix} \beta_{t-d}, \cdots, \beta_{t-d-b}, \alpha_{t-1}, \cdots, \alpha_{t-p}, c \end{bmatrix} \quad \mathbf{z}_{t} = \begin{bmatrix} \mathbf{x}_{t-d}, \cdots, \mathbf{x}_{t-d-b}, y_{t-1}, \cdots, y_{t-p}, 1 \end{bmatrix}$$
$$y_{t} = \mathbf{w} \mathbf{z}_{t}^{T} + \varepsilon_{t}$$

Least Squares Problem:

$$\min_{\mathbf{w}} \sum_{t} l(\mathbf{z}_{t}, y_{t}) = \sum_{t} (y_{t} - \mathbf{w}\mathbf{z}_{t}^{T})^{2}$$

Limitation

Irregular seasonal pattern in real world

Dynamic Modeling

 Time dependent weight: different model for different time point

$$y_t = \mathbf{w}_t \mathbf{z}_t^T + \boldsymbol{\varepsilon}_t$$

Model complexity constraint

$$\sum_{i=1}^{N} \left(y_i - \mathbf{w}_i \mathbf{z}_i^T \right)^2 + \eta R(\mathbf{w})$$

Similarity Graph

fully connected graph

nearest neighbor graph

seasonal nearest neighbor graph

Solution

Objective

$$\sum_{i=1}^{N} \left(\boldsymbol{y}_{i} - \mathbf{w}_{i} \mathbf{z}_{i}^{T} \right)^{2} + \eta \sum_{i,j} S_{ij} \left\| \mathbf{w}_{i} - \mathbf{w}_{j} \right\|_{2}^{2}$$

 Block Coordinate Descent: solve each model by fixing all others alternatively

$$\min_{\mathbf{w}_i} \left(y_i - \mathbf{w}_i \mathbf{z}_i^T \right)^2 + \eta \sum_{j \in B_i} \left\| \mathbf{w}_i - \mathbf{w}_j \right\|_2^2$$

closed-form solution: $\mathbf{w}_i = \left(\mathbf{z}_i^T \mathbf{z}_i + \eta K_i \mathbf{I}\right)^{-1} \left(y_i \mathbf{z}_i^T + \eta \sum_{j \in B_i} \mathbf{w}_j\right)$

Algorithm

Algorithm 1 Dynamic Autoregressive Model with Exogenous Variables (DARX)

input data source \mathbf{X} , historical target \mathbf{y} .

- 1: Build the samples \mathbf{Z} , initial weight $\mathbf{W}^{(0)}$
- 2: repeat
- 3: for $i = 1, \dots, N$ do
- 4: Solve sub-problem (5) by $\left(\mathbf{z}_{i}^{T}\mathbf{z}_{i} + \eta K_{i}\mathbf{I}\right)^{-1}\left(y_{i}\mathbf{z}_{i}^{T} + \eta \sum_{j \in B_{i}} \mathbf{w}_{j}\right)$
- 5: end for
- 6: **until** Terminated

output Regression weight W.

Dynamic Poisson ARX Model

Poisson distribution

$$\Pr(y) = \frac{\lambda^{y} e^{-\lambda}}{y!}$$

Link function

$$\log(\mathbb{E}[y | \mathbf{z}]) = \log(\lambda) = \mathbf{w}\mathbf{z}^{T}$$

Optimization Problem (maximizing log-likelihood):

$$\begin{split} \min_{\mathbf{W}} \quad & \sum_{i} \Big(\mathbf{w}_{i} \mathbf{z}_{i}^{T} - y_{i} \log(\mathbf{w}_{i} \mathbf{z}_{i}^{T}) \Big) + \eta \sum_{i,j} S_{ij} \left\| \mathbf{w}_{i} - \mathbf{w}_{j} \right\|_{2}^{2} \\ s.t. \quad & \mathbf{w}_{i} \mathbf{z}_{i}^{T} \geq 0, \ \forall i. \end{split}$$

Solution

Block Coordinate Descent

$$\min_{\mathbf{w}_{i}} \left(\mathbf{w}_{i} \mathbf{z}_{i}^{T} - y_{i} \log(\mathbf{w}_{i} \mathbf{z}_{i}^{T}) \right) + \eta \sum_{j} S_{ij} \left\| \mathbf{w}_{i} - \mathbf{w}_{j} \right\|_{2}^{2}$$

s.t. $\mathbf{w}_{i} \mathbf{z}_{i}^{T} \ge 0.$

Each subproblem is solved by Newton-Raphson method

$$\mathbf{w}_{i} \leftarrow \mathbf{w}_{i} - \mathbf{H}_{i}^{-1}\mathbf{g}_{i}$$
$$\mathbf{w}_{i} \leftarrow \mathbf{w}_{i} - \frac{\mathbf{w}_{i}\mathbf{Z}_{i}^{T}}{\mathbf{Z}_{i}\mathbf{Z}_{i}^{T}}\mathbf{z}_{i}$$

$$\mathbf{g}_{i} = \left(1 - \frac{y_{i}}{\mathbf{w}_{i} \mathbf{z}_{i}^{T}}\right) \mathbf{z}_{i} + 2\eta \sum_{j} S_{ij} \left(\mathbf{w}_{i} - \mathbf{w}_{j}\right)$$

$$\mathbf{H}_{i} = \frac{\mathcal{Y}_{i}}{\left(\mathbf{w}\mathbf{z}_{i}^{T}\right)^{2}} \left(\mathbf{z}_{i}^{T}\mathbf{z}_{i}\right) + 2\eta \sum_{j} S_{ij}$$

Table 1: Data source characteristics. Delayed refers to whether the data source is available for a given week in the same week or later. Revised refers to whether older values can get revised in future updates.

Characteristics	Num. Dimensions	Delayed?	Revised?	Temporal Resolution	Spatial Resolution
PAHO/CDC	1	Yes	Yes	Weekly	Country
Google Flue Trends (GFT)	1	No	Yes	Weekly	Country
Google Search Trends (GST)	114	No	Yes	Weekly	Country
Weather	5	No	No	6 hours \rightarrow Weekly	4 locations \rightarrow Country
HealthMap	114×3	No	No	$\text{Daily} \to \text{Weekly}$	Country

Datasets: United States (US) and 14 Latin American (LA) countries including Argentina (AR), Bolivia (BO), Chile (CL), Colombia (CO), Costa Rica (CR), Ecuador (EC), Guatemala (GT), Honduras (HN), Mexico (MX), Nicaragua (NI), Panama (PA), Peru (PE), Paraguay (PY) and, El Salvador (SV)

Algorithms: ARX, NMF, SARX, DARX, DPARX

er

Measures:

$$vor = \frac{4}{N} \sum_{t=t_s}^{t_e} \frac{|y_t - \hat{y}_t|}{\max(y_t, \hat{y}_t, 10)}$$

 $acc = 4 - error \in [0, 4]$

Prediction Accuracy

Table 2. Prediction accuracies for competing algorithms with different forecast steps over different countries using the GFT input source.

Step	Method	AR	BO	CL	MX	PE	PY	US
	ARX	2.85	2.63	3.18	2.61	2.51	2.82	3.71
1	MFN	2.33	2.41	2.34	2.69	2.48	2.54	3.73
T	SARX	3.02	2.42	3.11	2.90	2.81	2.69	3.67
	DARX	3.05	2.74	3.12	2.78	2.50	2.65	3.71
	DPARX	3.13	2.82	3.18	2.97	2.64	2.81	3.72
	ARX	2.38	2.22	2.83	1.88	1.90	2.57	3.47
2	MFN	2.12	2.00	2.13	2.33	2.21	2.19	3.63
4	SARX	2.75	2.03	2.76	2.64	2.43	2.43	3.64
	DARX	2.94	2.68	3.02	2.58	2.38	2.58	3.60
	DPARX	2.86	2.70	2.89	2.64	2.52	2.65	3.61
	ARX	2.11	1.86	2.61	1.28	1.44	2.31	3.19
વ	MFN	1.99	1.87	2.11	2.14	2.10	2.09	3.33
J	SARX	2.33	1.61	2.46	2.42	2.16	2.23	3.40
	DARX	2.66	2.36	2.77	2.37	2.26	2.46	3.41
	DPARX	2.58	2.53	2.56	2.45	2.37	2.52	3.42
	ARX	1.84	1.61	2.39	0.88	1.12	2.22	2.92
4	MFN	1.85	1.83	2.00	2.05	2.01	1.94	3.15
	SARX	2.12	1.41	2.30	2.22	2.02	2.09	3.30
	DARX	2.34	2.21	2.52	1.98	2.19	2.22	3.18
	DPARX	2.29	2.35	2.32	2.26	2.29	2.40	3.20

Μ

Step	Method	AR	BO	CL	CO	CR	EC	GT	HN	Ν	MX	NI	PA	PE	PY	I SV	/ I	JS			
	ARX	2.94	2.51	3.10	2.90	0 2.21	2.81	2.83	2.96	3 2	2.25	2.18	2.78	8 2.5	1 2.8	34 2.8	33 3	.51			
1	MFN	2.99	3.01	2.88	2.5	3 2.78	2.81	2.77	2.83	3 2	2.61	2.70	2.5	5 2.8	2 2.6	6 2.7	79 3	.81			
	DARX	3.09	2.84	3.17	2.84	4 2.57	2.94	2.83	2.89) 2	2.91	2.77	2.75	2 2.6	7 2.7	79 2.7	72 3	.71			
	DPARX	2.98	2.84	3.07	3.0	1 2.70	2.97	2.87	2.93	3 2	2.84	2.86	2.85	2 2.7	8 2.8	36 2.7	77 3	.72			
	ARX	2.56	2.05	2.63	2.7	1 1.61	2.56	2.63	2.76	5 1	1.15	1.36	2.50	5 2.0	5 2.6	52 2.6	64 3	.21			
2	MFN	2.86	2.89	2.81	2.49	9 2.71	2.67	2.72	2.41	2	2.55	2.31	2.50) 2.5	9 2.7	'1 2.3	30 3	.75		D	
4	DARX	2.98	2.69	3.00	2.69	9 2.63	2.79	2.72	2.81	2	2.66	2.28	2.5	5 2.4	9 2.6	68 2.6	6 3	.60			
	DPARX	2.67	2.73	2.86	2.8	3 2.66	2.79	2.78	2.78	3 2	2.62	2.49	2.7	1 2.6	3 2.6	64 2.6	58 3	.61		<u>01</u>	i <mark>h</mark>
	ARX	2.25	1.65	2.21	2.50	0 1.06	2.30	2.39	2.59) ().60	0.94	2.42	2 1.7	2 2.3	39 2.4	46 2	.92			
3	MFN	2.49	2.38	2.41	2.3	3 2.45	2.31	2.32	2.10) 2	2.21	2.11	2.19	9 2.2	2 2.4	10 2.0)8 3	.64			
0	DARX	2.68	2.32	2.68	2.5'	7 2.52	2.72	2.50	2.65	5 2	2.47	2.00	2.55	$\frac{2}{2}$ 2.3	$\frac{2}{1}$ 2.5	54 2.5	53 3	.41			
	DPARX	2.33	2.44	2.63	2.70	0 2.58	2.66	2.59	2.61	2	2.36	2.31	2.7	5 2.4	4 2.5	51 2.5	5 3	.42			
	ARX	1.98	1.37	1.73	2.3	1 0.72	2.07	2.22	2.41	0).39	0.83	2.2	1 1.4	6 2.2	21 2.3	30 2	.56			
4	MFN	2.10	2.13	2.15	2.04	$\frac{4}{2.25}$	2.11	2.22	1.94	1	1.99	1.87	2.0	$\frac{1}{1.8}$	$\frac{6}{2.1}$	0 1.7	77 3	.54			
	DARX	2.42	2.12	2.39	2.49	9 2.34	2.52	2.42	2.51		2.17	1.74	2.3	$\frac{8}{2.2}$	$\frac{7}{2.3}$	$\frac{30}{7}$ 2.4	12 3	.18			
	DPARA	2.10	2.23	2.32	2.64	4 2.38	2.52	2.55	2.45) 2	2.06	2.15	2.7	2 2.3	8 2.2	27 2.5	5 3	.20			
		Step	Datas	set	AR	BO	CL	CO		R	EC		T	HN	MX	. NI		PA	P]	E	F
			M	FN	2.61	2.44	2.55	2.22	2.0	61	2.5	$2 \mid 2$.31	2.62	2.48	3 2.6	61	2.31	2.5	23	2
		1	DAI	RX	2.99	2.65	3.09	2.74	2.4	41	2.8	6 2	.72	2.83	2.82	2 2.8	34	2.59	2.	56	2
			DPAI	RX	3.07	2.74	3.15	2.85	2.	72	2.8	$0 \mid 2$.51	2.80	2.96	3 2.7	77	2.59	2.	66	2
			M	FN	2.50	2.33	2.31	2.10	2.4	44	2.2	9 2	.11	2.43	2.37	7 2.3	39	2.20	2.0	01	2
		2	DAI	RX	2.83	2.54	2.94	2.57	2.	53	2.6	9 2	.58	2.72	2.59) 2.4	10	2.35	2.4	40	2
			DPAI	RX	2.78	2.59	2.86	2.67	2.0	63	2.6	$7 \mid 2$.35	2.71	2.60) 2.4	18	2.43	2.	53	2
	_		M	FN	2.33	2.10	2.16	1.99	2.5	21	2.0	3 1	.99	2.14	2.20) 2.1	4	2.02	1.9	91	2
		3	DAI	RX	2.51	2.07	2.69	2.45	2.	36	2.4	7 2	.41	2.54	2.34	4 2.0)6	2.48	2.	10	2
			DPAI	RX	2.46	2.41	2.53	2.56	2.4	48	2.5	1 2	.26	2.58	2.38	3 2.3	30	2.41	2.3	34	2
			M	FN	1.99	2.00	2.01	1.82	1.9	97	1.8	8 1	.92	1.93	1.81	l 1.7	7	1.79	1.	70	1
		4	DAI	RX	2.16	1.91	2.36	2.24	2.5	20	2.1	7 2	.28	2.40	1.80) 1.8	36	2.40	2.0	06	2
			DPAI	RX	2.17	2.21	2.29	2.46	2.	35	2.3	3 2	.14	2.46	2.10) 2.1	3	2.33	2.:	21	2
				S	ten	Datase	t AB	B	$) \downarrow ($	L		$\mathbf{D} \perp \mathbf{C}$	B	EC	GT	HN	MX		ΓŢ	PA	7
						MEI	$\frac{1}{\sqrt{28}}$	1 21	2 0	<u>63</u>		$\frac{5}{8}$	01	$\frac{10}{277}$	2.63	2 73	2.5	1 2	$\frac{1}{61}$	2.54	
					1	DAR	$\frac{1}{X}$ $\frac{2.0}{3.0}$	$\frac{1}{0}$ 26	$\frac{10}{39}$ 3	111	2.0	$\frac{70}{79}$ 2	44	$\frac{2.11}{2.89}$	$\frac{2.05}{2.75}$	2.13 2.91	$\frac{2.0}{2.8}$	$\frac{5}{5}$ 2	86	$\frac{2.04}{2.60}$:
						DPAR	X 3.0	$\frac{2}{7}$ 2.7	74 3	5.15	2.8	$\frac{3}{34}$ 2	.69	2.83	2.58	2.82	2.9	5 2.	79	2.59	,
						MFI	N 2.7	1 2.9)1 2	2.30	2.2	21 2	77	2.49	2.40	2.38	2.4	4 2.	36	2.15	
					2	DAR	X 2.8	6 2.6	<u>50 3</u>	5.01	2.6	52 2	.54	2.74	2.64	2.77	2.6	$\frac{-1}{3}$	47	2.37	,
					-	DDAD					1 0 0		00	0.51	0.44	0.70				0.45	_

ediction accuracy on her input sources

Step	Dataset	AR	BO	CL	CO	CR	EC	GT	HN	MX	NI	PA	PE	PY	SV
	MFN	2.61	2.44	2.55	2.22	2.61	2.52	2.31	2.62	2.48	2.61	2.31	2.23	2.53	2.13
1	DARX	2.99	2.65	3.09	2.74	2.41	2.86	2.72	2.83	2.82	2.84	2.59	2.56	2.75	2.63
	DPARX	3.07	2.74	3.15	2.85	2.72	2.80	2.51	2.80	2.96	2.77	2.59	2.66	2.82	2.61
	MFN	2.50	2.33	2.31	2.10	2.44	2.29	2.11	2.43	2.37	2.39	2.20	2.01	2.27	2.00
2	DARX	2.83	2.54	2.94	2.57	2.53	2.69	2.58	2.72	2.59	2.40	2.35	2.40	2.54	2.51
	DPARX	2.78	2.59	2.86	2.67	2.63	2.67	2.35	2.71	2.60	2.48	2.43	2.53	2.57	2.59
	MFN	2.33	2.10	2.16	1.99	2.21	2.03	1.99	2.14	2.20	2.14	2.02	1.91	2.13	1.92
3	DARX	2.51	2.07	2.69	2.45	2.36	2.47	2.41	2.54	2.34	2.06	2.48	2.10	2.49	2.44
	DPARX	2.46	2.41	2.53	2.56	2.48	2.51	2.26	2.58	2.38	2.30	2.41	2.34	2.49	2.51
4	MFN	1.99	2.00	2.01	1.82	1.97	1.88	1.92	1.93	1.81	1.77	1.79	1.70	1.82	1.71
	DARX	2.16	1.91	2.36	2.24	2.20	2.17	2.28	2.40	1.80	1.86	2.40	2.06	2.23	2.36
	DPARX	2.17	2.21	2.29	2.46	2.35	2.33	2.14	2.46	2.10	2.13	2.33	2.21	2.30	2.44

Step	Dataset	AR	BO	CL	CO	CR	EC	GT	HN	MX	NI	PA	PE	PY	SV	US
	MFN	2.81	3.13	2.63	2.58	2.91	2.77	2.63	2.73	2.50	2.61	2.54	2.69	2.51	2.61	3.78
1	DARX	3.00	2.69	3.11	2.79	2.44	2.89	2.75	2.91	2.85	2.86	2.60	2.65	2.75	2.64	3.71
-	DPARX	3.07	2.74	3.15	2.84	2.69	2.83	2.58	2.82	2.95	2.79	2.59	2.70	2.83	2.62	3.72
	MFN	2.71	2.91	2.30	2.21	2.77	2.49	2.40	2.38	2.44	2.36	2.15	2.33	2.22	2.33	3.64
2	DARX	2.86	2.60	3.01	2.62	2.54	2.74	2.64	2.77	2.66	2.47	2.37	2.47	2.53	2.58	3.60
	DPARX	2.78	2.60	2.88	2.67	2.62	2.71	2.44	2.72	2.60	2.50	2.45	2.58	2.58	2.60	3.61
	MFN	2.44	2.30	2.42	2.07	2.31	2.14	2.28	2.01	2.19	2.12	1.99	2.00	1.97	1.95	3.35
3	DARX	2.58	2.18	2.78	2.49	2.35	2.63	2.51	2.62	2.48	2.15	2.49	2.33	2.48	2.51	3.41
	DPARX	2.46	2.42	2.55	2.56	2.47	2.58	2.36	2.59	2.38	2.31	2.45	2.37	2.49	2.50	3.42
4	MFN	1.93	1.99	2.20	1.88	2.00	1.95	2.15	1.95	1.89	1.85	1.72	1.78	1.91	1.81	3.13
	DARX	2.28	2.02	2.46	2.39	2.19	2.37	2.39	2.45	2.22	1.97	2.45	2.26	2.20	2.42	3.18
	DPARX	2.17	2.21	2.30	2.44	2.34	2.42	2.25	2.47	2.12	2.14	2.37	2.25	2.30	2.47	3.21

Model Similarity

M

ILI case count series

Long Term Prediction

Comparison of seasonal characteristics for Mexico using different algorithms for one-step ahead prediction. Blue vertical dashed lines indicate the actual start and end of the season. ILI season considered: 2013.

Conclusion

- ILI case count prediction is an important time series prediction problem.
- Limitation of the conventional time series model.
- Dynamic model is more appropriate.
- Further work: fuse different indicator data sources together.

Thanks!

