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Influenza-Like-Illness (ILI) Case Count

Argentina

• Seasonal influenza regularly affects the global population 

• Epidemic diseases forecasting and surveillance 

• Case count (#ILI): doctor visit 

• Calibrated #ILI over #week



ILI Case Count Prediction
• Long term prediction 

- Season-wise prediction 

- Target: starting time, ending time, 
peak value, peak time

• Short term prediction 
- Point-wise prediction 

- Target: values for next few time points

Future value

Peak Value

Peak Time
Starting Time

Ending Time



ILI Forecast with Indicator Data

The figure is cited from P. Chakraborty et al. Forecasting a moving target: Ensemble models for ILI case count predictions. SDM ’14, 2014.



Indicator Data Source

• Weather: temperature, humidity

• Social media text data: Twitter, Google search 
trends(GST) 

• Domain data: Paho/CDC (history record), 
Google flu trends (GFT), HealthMap

• Goal: multi-step ILI case count forecasting

• Others: OpenTables … 



Key Contributions

• New dynamic time series prediction model 

• Dynamic Poisson ARX model for count data 

• Efficient solution with block coordinate descent 

• Applicable to other time series forecasting 

problems



ARX Model

• Autoregressive model with exogenous input

order	  p	  with	  input	  lag	  d

yt = α i
i=1

p

∑ yt−i + βi
T

i=0

b

∑ x t−d−i + ε t + c

indicator	  data	  as	  the	  (mutli-‐dimensional)	  exogenous	  input



ARX Model

yt = α i
i=1

p

∑ yt−i + βi
T

i=0

b

∑ x t−d−i + ε t + c

min
w

l
t
∑ (zt , yt ) = ( yt − wzt

T )2
t
∑

yt = wzt
T + ε t

zt = x t−d ,!,x t−d−b , yt−1,!, yt− p ,1⎡⎣ ⎤⎦w = βt−d ,!,βt−d−b ,α t−1,!,α t− p ,c⎡⎣ ⎤⎦

Least	  Squares	  Problem:



• Irregular seasonal pattern in real world

Limitation



Dynamic Modeling

yt = wtzt
T + ε t

yi − wizi
T( )2

i=1

N

∑ +ηR(w)

• Time dependent weight: different model for 
different time point

• Model complexity constraint



Similarity Graph

the least squares loss as

min
w

X

t

l(zt, yt) =
X

t

(yt �wzTt )
2
,

where l(zt, yt) is a general loss function, and here we use the
least squares approximation residual as the loss function.

2.2 Dynamic Model
The standard ARX model assumes that the model pa-

rameters do not change with time. However, in the case
count forecasting problem, the behavior and the spread of
the flu can vary over time, especially as a result of human
interventions. Thus the prediction model should adapt in a
similar manner. Ohlsson et al. [15] relaxed the linear model
to piecewise constant linear model in ARX but the piece-
wise constant model still requires the nearby model to be
the same, and thus a limitation for ILI case count forecast-
ing. In this paper, we further relax this requirement by
building a separate model for each time point. We assume
that each model is similar to a group of others and formulate
a dynamic model as:

yt =
pX

i=1

↵

(t)
i yt�i +

bX

i=0

(�(t)
i )Txt�d�i + "t + c

(t)
.

This dynamic autoregressive model, with time dependent
parameters, can be compactly written as:

yt = wtz
T
t + "t,

where wt =
h
�(t)

t�d, · · · ,�
(t)
t�d�b,↵

(t)
t�1, · · · ,↵

(t)
t�p, c

(t)
i
are the

time-dependent weights.
Without any constraints, the dynamic ARX model has too

many parameters to be learnt e↵ectively. We constrain this
complexity by enforcing that, even in the presence of model
changes, the models at di↵erent time points should still share
some common structure. We model our prior knowledge of
such model similarity as a graph structure, which is shown
in Figure 1. Given a series of models within a period of
time, we define a graph G = {V,E}, where V is the node
set composed of all models {wt} at di↵erent time points
and E is the edge set, which represents the similarity of the
corresponding pair of nodes. For simplicity, we assign binary
values of Sij = {0, 1} for each edge. Sij = 1 indicates that
the corresponding two nodes wi and wj should be similar
to each other, otherwise Sij = 0 to denote that there are no
constraint between the corresponding nodes.

There are three types of useful graph structure for ILI case
count forecasting (see Figure 2) which can be described as:
• Fully connected graph: All elements in S are 1, except
the diagonal elements. This is similar to the standard ARX
model. However, it allows a tolerance of model variance.
• Nearest neighbor graph: All nearby models have an edge
with element 1 in a small neighborhood area, which mean
St,t+k = 1, 8k  K. This is similar to piecewise constant
model or fused lasso problem if we choose K = 1.
• Seasonal nearest neighbor graph: All nearby models in the
same season have edge connections as 1 and the models at
similar time points from di↵erent seasons have edge connec-
tions as 1. This is more useful for flu forecasting, where the
trends are highly periodic.

Figure 1: Modeling similarity as graph structures.
In this graph, there are three consecutive years
(rows). Nodes in each row denote the models in
each year, which are ordered in time. The nodes
from di↵erent years are aligned in the same order.
For ILI forecasting, the last node should be simi-
lar to the nearby nodes in the same year as well as
nodes in previous years it is connected to.
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Figure 2: The graph structure for three di↵erent
types of prior knowledge (fully connected, nearest
neighbors, seasonal nearest neighbors).

Using Euclidean distance as a similarity measure, we ob-
tain the following formulation of the problem:

min
W

l(zt, yt) + ⌘

P
i,j

Sij kwi �wjk22 + � kWk2F (1)

where, W =
⇥
wT

1 , · · · ,wT
N

⇤
. In the objective function, the

second term constrains the model similarity and the third
term constrains the complexity of the models.
Reformulating the Frobenius norm term as

P
i 1 kwi � 0k22,

we find that it to be similar to the other regularization term.
Adding a null model node, w0 = 0, to the graph, and as-
suming it to connected to all the other nodes with S0i = 1
8i > 0, the regluarization term can be simplified as:

P
i,j=0,...,N

Sij kwi �wjk22 (2)

A simple form of the optimization problem can be then
stated as:

min
W

l(zt, yt) + ⌘

P
i,j

Sij kwi �wjk22
where, w0 = 0

(3)

2.3 Dynamic ARX Model
Using the least squares loss in (3), the objective function

can be given as:
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⇣
yi �wiz

T
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⌘2
+ ⌘

X

i,j

Sij kwi �wjk22 . (4)

The overall problem is then a convex optimization prob-
lem. We apply the block coordinate descent method (see
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rameters do not change with time. However, in the case
count forecasting problem, the behavior and the spread of
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time-dependent weights.
Without any constraints, the dynamic ARX model has too

many parameters to be learnt e↵ectively. We constrain this
complexity by enforcing that, even in the presence of model
changes, the models at di↵erent time points should still share
some common structure. We model our prior knowledge of
such model similarity as a graph structure, which is shown
in Figure 1. Given a series of models within a period of
time, we define a graph G = {V,E}, where V is the node
set composed of all models {wt} at di↵erent time points
and E is the edge set, which represents the similarity of the
corresponding pair of nodes. For simplicity, we assign binary
values of Sij = {0, 1} for each edge. Sij = 1 indicates that
the corresponding two nodes wi and wj should be similar
to each other, otherwise Sij = 0 to denote that there are no
constraint between the corresponding nodes.

There are three types of useful graph structure for ILI case
count forecasting (see Figure 2) which can be described as:
• Fully connected graph: All elements in S are 1, except
the diagonal elements. This is similar to the standard ARX
model. However, it allows a tolerance of model variance.
• Nearest neighbor graph: All nearby models have an edge
with element 1 in a small neighborhood area, which mean
St,t+k = 1, 8k  K. This is similar to piecewise constant
model or fused lasso problem if we choose K = 1.
• Seasonal nearest neighbor graph: All nearby models in the
same season have edge connections as 1 and the models at
similar time points from di↵erent seasons have edge connec-
tions as 1. This is more useful for flu forecasting, where the
trends are highly periodic.
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(rows). Nodes in each row denote the models in
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from di↵erent years are aligned in the same order.
For ILI forecasting, the last node should be simi-
lar to the nearby nodes in the same year as well as
nodes in previous years it is connected to.
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Figure 2: The graph structure for three di↵erent
types of prior knowledge (fully connected, nearest
neighbors, seasonal nearest neighbors).
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second term constrains the model similarity and the third
term constrains the complexity of the models.
Reformulating the Frobenius norm term as

P
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we find that it to be similar to the other regularization term.
Adding a null model node, w0 = 0, to the graph, and as-
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The standard ARX model assumes that the model pa-
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to each other, otherwise Sij = 0 to denote that there are no
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There are three types of useful graph structure for ILI case
count forecasting (see Figure 2) which can be described as:
• Fully connected graph: All elements in S are 1, except
the diagonal elements. This is similar to the standard ARX
model. However, it allows a tolerance of model variance.
• Nearest neighbor graph: All nearby models have an edge
with element 1 in a small neighborhood area, which mean
St,t+k = 1, 8k  K. This is similar to piecewise constant
model or fused lasso problem if we choose K = 1.
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same season have edge connections as 1 and the models at
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Figure 2: The graph structure for three di↵erent
types of prior knowledge (fully connected, nearest
neighbors, seasonal nearest neighbors).
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with element 1 in a small neighborhood area, which mean
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Figure 2: The graph structure for three di↵erent
types of prior knowledge (fully connected, nearest
neighbors, seasonal nearest neighbors).

Using Euclidean distance as a similarity measure, we ob-
tain the following formulation of the problem:

min
W

l(zt, yt) + ⌘
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Sij kwi �wjk22 + � kWk2F (1)

where, W =
⇥
wT
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⇤
. In the objective function, the

second term constrains the model similarity and the third
term constrains the complexity of the models.
Reformulating the Frobenius norm term as

P
i 1 kwi � 0k22,

we find that it to be similar to the other regularization term.
Adding a null model node, w0 = 0, to the graph, and as-
suming it to connected to all the other nodes with S0i = 1
8i > 0, the regluarization term can be simplified as:

P
i,j=0,...,N

Sij kwi �wjk22 (2)

A simple form of the optimization problem can be then
stated as:

min
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l(zt, yt) + ⌘

P
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Sij kwi �wjk22
where, w0 = 0

(3)

2.3 Dynamic ARX Model
Using the least squares loss in (3), the objective function

can be given as:
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The overall problem is then a convex optimization prob-
lem. We apply the block coordinate descent method (see
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Solution

min
wi

yi − wizi
T( )2 +η wi − w j 2

2

j∈Bi
∑

yi − wizi
T( )2

i=1

N

∑ +η Sij
i, j
∑ wi − w j 2

2

• Objective

• Block Coordinate Descent: solve each model by 
fixing all others alternatively

wi = zi
Tzi +ηKiI( )−1 yiziT +η w j

j∈Bi
∑

⎛

⎝⎜
⎞

⎠⎟
closed-‐form	  solution:



Algorithm 1) to optimize (4), as the weight w naturally
preserves a block structure. In block coordinate descent, we
iteratively optimize until converegence each wi keeping all
other blocks fixed. In each step, we solve a simple regression
problem

min
wi

�
yi �wiz

T
i

�2
+

PN
t 6=i

�
yt �wtz

T
t

�2

+⌘

P
j Sij kwi �wjk22 + ⌘

P
t 6=i,j Stj kwt �wjk22 .

(5)

It can be simplified as

min
wi

⇣
yi �wiz

T
i

⌘2
+ ⌘

X

j2Bi

kwi �wjk22 ,

where Bi is the set of nodes connected with node i. The
gradient of this objective function is:

2
⇣
wiz

T
i � yi

⌘
zi + 2⌘

X

j2Bi

(wi �wj) .

Under first order optimality condition, this problem has a
closed-form solution as

wi =
⇣
zTi zi + ⌘KiI

⌘�1

0

@
yiz

T
i + ⌘

X

j2Bi

wj

1

A
,

where Ki is the number of the connected nodes for node i.

Algorithm 1 Dynamic Autoregressive Model with Exoge-
nous Variables (DARX)

input data source X, historical target y.
1: Build the samples Z, initial weight W(0)

2: repeat
3: for i = 1, · · · , N do
4: Solve sub-problem (5) by

�
zTi zi + ⌘KiI

��1
⇣
yiz

T
i + ⌘

P
j2Bi

wj

⌘

5: end for
6: until Terminated
output Regression weight W.

2.4 Dynamic Poisson ARX for ILI Forecast-
ing

Since ILI case count forecasting aims to predict the num-
ber of the infected people at di↵erent time points, it is natu-
ral to apply a Poisson regression model. We thus model the
probability of the value of the response variable as a Poisson
distribution:

Pr (y) =
�

y
e

��

y!
,

where � is the expected count or the mean parameter and y

is the count of events.
Given the case counts at di↵erent time points as {y1, · · · , yN}

and the associated input features as {z1, · · · , zN}, the like-
lihood and hence the log-likelihood can be expressed as:

Pr ({yi}|{zi}) =
QN

i=1
�yie��

yi!

) log (Pr ({yi}|{zi})) =
PN

i=1 (yi log(�)� �� log(yi!))

Poisson regression model is a generalized linear model with
the logarithm as the cannonical link function:

log (E[y|z]) = log(�) = wzT .

Thus � = e

(zwT ), and the log likelihood can be written as

NX

i=1

⇣
yi(wzTi )� e

(wzTi ) � log(y!)
⌘
.

The weight W is learnt by maximizing the log likelihood:

max
w

NX

i=1

⇣
yi(wzTi )� e

(wzTi )
⌘
.

Alternately, we can use the identity link function to get
� = (zwT ) , which is called linear Poisson regression [6] and
has more computational benefits. Under the identity link
function, the negative log likelihood of the training samples
can be written as

l(X,y,W) = �
NX

i=1

⇣
yi log(wzTi )� (wzTi )� log(yi!)

⌘
.

2.5 Block Coordinate Descent Optimization
Applying the linear Poisson regression loss function de-

scribed above in (3), we obtain a convex optimization prob-
lem as:

min
W

P
i

�
wiz

T
i � yi log(wiz

T
i )

�
+ ⌘

P
i,j Sij kwi �wjk22

s.t. wiz
T
i � 0, 8i.

The non-negative constraints are naturally satisfied as wiz
T
i

is in the logarithm form in the objective.
Similar to the least squares loss case, we apply block co-

ordinate descent to solve the above formulation (see Algo-
rithm 2). In block coordinate descent, we iteratively opti-
mize one block of variables with all other blocks fixed. In
each step, the objective function is decomposed into

�
wiz

T
i � yi log(wiz

T
i )

�
+

PN
t 6=i

�
wtz

T
t � yt log(wtz

T
t )

�

+⌘

P
j Sij kwi �wjk22 + ⌘

P
t 6=i,j Stj kwt �wjk22 .

The minimization of the objective function in each step is a
constrained regression problem:

min
wi

�
wiz

T
i � yi log(wiz

T
i )

�
+ ⌘

P
j Sij kwi �wjk22

s.t. wiz
T
i � 0.

(6)

This sub-problem is a convex optimization problem. How-
ever, it has no closed-form solution. We apply the projection
gradient method to solve it iteratively. In each iteration, we
first apply the Newton-Raphson method on the objective
function and then project the obtained solution to the feasi-
ble set. For the Newton-Raphson gradient step, the gradient
and the Hessian of the objective (6) can be given as:

gi =
⇣
1� yi

wiz
T
i

⌘
zi + 2⌘

P
j Sij (wi �wj)

Hi = yi

(wzTi )
2

�
zTi zi

�
+ 2⌘

P
j Sij

(7)

Thus, the update rule for each wi is

wi  wi �H�1
i gi.

After this update, we project the obtained weight to the
feasible set by

wi  wi �
wiz

T
i

zizTi
zi.

Algorithm
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Pr y( ) = λ ye−λ

y!

min
W

wizi
T − yi log(wizi

T )( )
i
∑ +η Sij

i, j
∑ wi − w j 2

2

s.t. wizi
T ≥ 0, ∀i.

Optimization	  Problem	  (maximizing	  log-‐likelihood):

log E[y | z]( ) = log(λ) = wzT

Poisson	  distribution

Link	  function



Solution
Block	  Coordinate	  Descent

gi = 1−
yi
wizi

T

⎛

⎝⎜
⎞

⎠⎟
zi + 2η Sij

j
∑ wi − w j( )

Hi =
yi
wzi

T( )2
zi
Tzi( )+ 2η Sij

j
∑

min
wi

wizi
T − yi log(wizi

T )( )+η Sij
j
∑ wi − w j 2

2

s.t. wizi
T ≥ 0.

Each	  subproblem	  is	  solved	  by	  Newton-‐Raphson	  method	  

wi ← wi −Hi
−1gi

wi ← wi −
wizi

T

zizi
T zi



Experiments
Table 1: Data source characteristics. Delayed refers to whether the data source is available for a given week
in the same week or later. Revised refers to whether older values can get revised in future updates.

Characteristics Num. Dimensions Delayed? Revised? Temporal Resolution Spatial Resolution

PAHO/CDC 1 Yes Yes Weekly Country
Google Flue Trends (GFT) 1 No Yes Weekly Country
Google Search Trends (GST) 114 No Yes Weekly Country
Weather 5 No No 6 hours ! Weekly 4 locations ! Country
HealthMap 114 ⇥ 3 No No Daily ! Weekly Country
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Figure 3: The distance matrix obtained from our
learned DPARX model (bottom figure), associated
with the ground truth ILI case count series (top
figure) on the AR dataset. We can observe the
strong seasonality automatically inferred in the ma-
trix. Each element in the matrix is the Euclidean
distance between a pair of the learned models at
two corresponding time points after training. For
the top figure, the x axis is the index of the weeks;
the y axis is the number of ILI cases. For the bottom
figure, both x and y axes are the index of the time
points. Note that the starting time point (index 0)
for the distance matrix is week 15 of the ILI case
count series.

In the following experiments, we present the prediction ac-
curacy, which is 4 � error, on di↵erent countries to show
the performance of di↵erent prediction models. A score of 4
thus indicates a perfect forecast.

3.3 Model Similarity
First, we conduct experiments to investigate the model

similarities posited by our proposed algorithm. In this ex-
periment, we calculate the distance between all pairs of mod-
els learned by DPARX during a period of time on the AR
dataset. We present the distance matrix associated with the
ground truth ILI case count series in Figure 3. We see that
the distance matrix has a strong seasonal pattern, which is
consistent with the pattern of the ILI case count series. At
the beginning of each flu season, the model is significantly

di↵erent from the rest of the models at other time points.
This result demonstrates that ILI case counts have a strong
periodic pattern and that the dynamic modeling approach
successfully captures this pattern. It also validates the ne-
cessity of conducting this level of modeling for flu forecast-
ing.
In the next experiment, we run our proposed DPARX

method on the US dataset under three di↵erent model sim-
ilarity graphs including the fully connected graph, the 3-
nearest neighbor graph and the seasonal 3-nearest neighbor
graph. We then calculate the three corresponding distance
matrices of the learned models, which are shown in Figure 4.
The patterns in the three distance matrices are very simi-
lar. However, the distances between the pairs of models are
smaller for the fully connected similarity graph. Without
strong prior knowledge, the fully connected similarity graph
is preferred, as during di↵erent seasons the target signal may
still be very di↵erent. In the following experiments, we will
use the fully connected similarity graph for the regulariza-
tion term.
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Figure 4: Model distance matrices for the US
dataset. The three matrices are derived from
the fully connected similarity graph, the 3-nearest
neighbor similarity graph and the seasonal 3-nearest
neighbor similarity graph, from left to right corre-
spondingly.

3.4 Forecasting Results
In the ILI cast count forecast experiments, we use the data

record from all 15 countries. All the case count data are as-
sociated with several data sources as listed in Table 11. We
start with 50 given time points and test the prediction re-
sult on the remaining time points. We run all the competing
methods in an online manner: the models are re-trained and
updated after the arrival of values at every additional time
point. For the DARX and DPARX models, we use the same
parameter settings: p = 1, b = 15 for GFT and Weather
data sources as these data sources have relatively small di-
mension; p = 1, b = 4 for GST and HealthMap data sources
as these data sources have relatively high dimension. The
ARX model does not provide numerical stable results for
high dimensional data. Thus we present its results on GFT
and Weather data sources with p = 1, b = 15. Likewise,
the training of the SARX model is very time consuming,

1The GFT information is provided only for countries AR,
BO, CL, MX, PE, PY and the US.

error = 4
N

| yt − ŷt |
max( yt , ŷt ,10)t=ts

te

∑ acc = 4− error ∈[0,4]

Datasets:	  United	  States	  (US)	  and	  14	  Latin	  American	  (LA)	  countries	  including	  
Argentina	  (AR),	  Bolivia	  (BO),	  Chile	  (CL),	  Colombia	  (CO),	  Costa	  Rica	  (CR),	  Ecuador	  
(EC),	  Guatemala	  (GT),	  Honduras	  (HN),	  Mexico	  (MX),	  Nicaragua	  (NI),	  Panama	  (PA),	  
Peru	  (PE),	  Paraguay	  (PY)	  and,	  El	  Salvador	  (SV)

Algorithms:	  ARX,	  NMF,	  SARX,	  DARX,	  DPARX

Measures:



Prediction Accuracy

especially for high dimensional data. We thus only present
its results using the GFT data source with the same setting
(p = 1 and b = 15). The remaining parameter in our model
is the regularization parameter that controls the variation
of the model. We fix it as ⌘ = 1 for the DARX model and
⌘ = 5 for the DPARX model during all experiments. For
MFN algorithm, we follow the same procedure and param-
eter setting as in [5].

We present the results of short-term ILI case count fore-
casting for di↵erent countries with both 1-step forecast and
multi-step forecasts with step sizes of 2, 3, and 4. The pre-
diction accuracy on data sources GFT, Weather, GST, and
HealthMap are presented in Tables 2, 3, 4, and 5, corre-
spondingly.

The experiments show that our models yield better predic-
tion accuracy, especially for multi-step forecasting. Multi-
step forecast is a much harder task than 1-step forecast.
The dynamic modeling of ARX provides more flexibility in
handling the uncertainty associated with the target signal.

Table 2: Prediction accuracies for competing algo-
rithms with di↵erent forecast steps over di↵erent
countries using the GFT input source. GFT data is
not available for other countries.

Step Method AR BO CL MX PE PY US

1

ARX 2.85 2.63 3.18 2.61 2.51 2.82 3.71
MFN 2.33 2.41 2.34 2.69 2.48 2.54 3.73
SARX 3.02 2.42 3.11 2.90 2.81 2.69 3.67
DARX 3.05 2.74 3.12 2.78 2.50 2.65 3.71

DPARX 3.13 2.82 3.18 2.97 2.64 2.81 3.72

2

ARX 2.38 2.22 2.83 1.88 1.90 2.57 3.47
MFN 2.12 2.00 2.13 2.33 2.21 2.19 3.63
SARX 2.75 2.03 2.76 2.64 2.43 2.43 3.64
DARX 2.94 2.68 3.02 2.58 2.38 2.58 3.60

DPARX 2.86 2.70 2.89 2.64 2.52 2.65 3.61

3

ARX 2.11 1.86 2.61 1.28 1.44 2.31 3.19
MFN 1.99 1.87 2.11 2.14 2.10 2.09 3.33
SARX 2.33 1.61 2.46 2.42 2.16 2.23 3.40
DARX 2.66 2.36 2.77 2.37 2.26 2.46 3.41

DPARX 2.58 2.53 2.56 2.45 2.37 2.52 3.42

4

ARX 1.84 1.61 2.39 0.88 1.12 2.22 2.92
MFN 1.85 1.83 2.00 2.05 2.01 1.94 3.15
SARX 2.12 1.41 2.30 2.22 2.02 2.09 3.30
DARX 2.34 2.21 2.52 1.98 2.19 2.22 3.18

DPARX 2.29 2.35 2.32 2.26 2.29 2.40 3.20

3.5 Seasonal Analysis
Thus far we have primarily focused on the near-term fore-

casting capability of the system. In addition to these near-
term forecasts, epidemiologists are often interested in pre-
dictions about seasonal characteristics. Typically, for a com-
plete ILI season, the seasonal quantities of interest are ‘start
week’, ‘peak week’, ‘end week’, ‘peak size’ and ‘season size’.
We present interpretations of these quantities and our meth-
ods for calculating the same2 as follows:

Start week: Within a particular ILI year (may not be cal-
endar year, e.g., in the USA, the ILI year spans from Epi

2Our definitions here are motivated by how CDC calculates
the same for the United States.

Week 40 to Epi Week 39 [1]), ‘start week’ is the week from
which ILI is said to be in season. We define start week for
a ILI year to be the first week where the ILI count for 3
consecutive past weeks (including itself) is greater than a
pre-defined threshold.
Peak week: Within a particular ILI year, the peak week is
the week for which the ILI count is highest for that ILI year.
Peak Size: Peak Size is the ILI count observed on the peak
week.
End week: Within a particular ILI year, the end week is
the first week after the peak week such that ILI counts for
3 consecutive past weeks (including itself) is lower than a
pre-defined threshold. End week signifies the end of the ILI
season and is thus of interest to epidemiologists.
Season Size: Season size is used as a proxy for the size of
the epidemic. It is calculated by summing up the total ILI
count from the start to the end week.

Typically, the relevant thresholds are estimated by surveil-
lance agencies based on expert knowledge. However, from
our experience we have found that using 40% quantile for a
year gives a reasonable threshold.
In this paper we have not trained the models to predict

the aforementioned metrics. However, we can construct ILI
prediction curves for each ‘step-ahead’, i.e., 1-step ILI pre-
diction curve, 2-step ILI prediction curve and so on. From
these prediction curves we can then calculate the season-
characteristics and compare them against those calculated
from the observed PAHO (or CDC) ILI counts.
We compare the predicted and observed seasonal charac-

teristics, for the last ILI year in our set for each country, in
Table 63. As Table 6 shows, the proposed algorithms work
well for a number of countries. In general DPARX performs
better in terms of the overall prediction characteristics. This
is consistent with our results for near-term forecasts. For
seasonal characteristics, Weather and GFT seem to be the
most important sources for prediction. We also present the
predicted and real curves for Mexico for the ILI season 2013
in Figure 5 based on 1-step ahead predictions. Excepting
GST and Healthmap data for some of the state-of-the-arts,
all the curves match up closely to the observed ILI curve.

4. CONCLUSION
This paper concerns a practical short-term ILI case count

forecasting problem based on multiple digital data sources.
One of the main contributions of the proposed model is that
the underlying autoregressive model is allowed to change
over time. In order to control the variation of the model, we
build a model similarity graph to indicate the relationship
between each pair of models at two di↵erent time points and
embed the prior knowledge as the structure of the graph.
The experiments demonstrate that our proposed algorithm
provides consistently better forecasting results than state-of-
the-art time series models used for short-term ILI case count
forecasting. We also observed that the dynamic model suc-
cessfully captures the seasonal pattern of flu activity. In
our future work, we plan to extend our proposed model
to the multi-source learning case, and learn the prediction
model with di↵erent data sources simultaneously. We expect

3We only show the most important algorithms over the most
relevant sources. For full table see http://www.yelab.net/

publications/ILI-KDD15

Table 2.  Prediction accuracies for competing algorithms with different 
forecast steps over different countries using the GFT input source.



Table 3: Prediction accuracies for competing algorithms with di↵erent forecast steps over di↵erent countries
using the weather data source.

Step Method AR BO CL CO CR EC GT HN MX NI PA PE PY SV US

1

ARX 2.94 2.51 3.10 2.90 2.21 2.81 2.83 2.96 2.25 2.18 2.78 2.51 2.84 2.83 3.51
MFN 2.99 3.01 2.88 2.53 2.78 2.81 2.77 2.83 2.61 2.70 2.56 2.82 2.66 2.79 3.81

DARX 3.09 2.84 3.17 2.84 2.57 2.94 2.83 2.89 2.91 2.77 2.72 2.67 2.79 2.72 3.71
DPARX 2.98 2.84 3.07 3.01 2.70 2.97 2.87 2.93 2.84 2.86 2.82 2.78 2.86 2.77 3.72

2

ARX 2.56 2.05 2.63 2.71 1.61 2.56 2.63 2.76 1.15 1.36 2.56 2.05 2.62 2.64 3.21
MFN 2.86 2.89 2.81 2.49 2.71 2.67 2.72 2.41 2.55 2.31 2.50 2.59 2.71 2.30 3.75

DARX 2.98 2.69 3.00 2.69 2.63 2.79 2.72 2.81 2.66 2.28 2.55 2.49 2.68 2.66 3.60
DPARX 2.67 2.73 2.86 2.83 2.66 2.79 2.78 2.78 2.62 2.49 2.71 2.63 2.64 2.68 3.61

3

ARX 2.25 1.65 2.21 2.50 1.06 2.30 2.39 2.59 0.60 0.94 2.42 1.72 2.39 2.46 2.92
MFN 2.49 2.38 2.41 2.33 2.45 2.31 2.32 2.10 2.21 2.11 2.19 2.22 2.40 2.08 3.64

DARX 2.68 2.32 2.68 2.57 2.52 2.72 2.50 2.65 2.47 2.00 2.52 2.32 2.54 2.53 3.41
DPARX 2.33 2.44 2.63 2.70 2.58 2.66 2.59 2.61 2.36 2.31 2.75 2.44 2.51 2.55 3.42

4

ARX 1.98 1.37 1.73 2.31 0.72 2.07 2.22 2.41 0.39 0.83 2.21 1.46 2.21 2.30 2.56
MFN 2.10 2.13 2.15 2.04 2.25 2.11 2.22 1.94 1.99 1.87 2.01 1.86 2.10 1.77 3.54

DARX 2.42 2.12 2.39 2.49 2.34 2.52 2.42 2.51 2.17 1.74 2.38 2.27 2.30 2.42 3.18
DPARX 2.10 2.23 2.32 2.64 2.38 2.52 2.55 2.45 2.06 2.15 2.72 2.38 2.27 2.53 3.20

Table 4: Prediction accuracies for competing algorithms with di↵erent forecast steps over di↵erent countries
using the GST data source.

Step Dataset AR BO CL CO CR EC GT HN MX NI PA PE PY SV

1
MFN 2.61 2.44 2.55 2.22 2.61 2.52 2.31 2.62 2.48 2.61 2.31 2.23 2.53 2.13

DARX 2.99 2.65 3.09 2.74 2.41 2.86 2.72 2.83 2.82 2.84 2.59 2.56 2.75 2.63
DPARX 3.07 2.74 3.15 2.85 2.72 2.80 2.51 2.80 2.96 2.77 2.59 2.66 2.82 2.61

2
MFN 2.50 2.33 2.31 2.10 2.44 2.29 2.11 2.43 2.37 2.39 2.20 2.01 2.27 2.00

DARX 2.83 2.54 2.94 2.57 2.53 2.69 2.58 2.72 2.59 2.40 2.35 2.40 2.54 2.51
DPARX 2.78 2.59 2.86 2.67 2.63 2.67 2.35 2.71 2.60 2.48 2.43 2.53 2.57 2.59

3
MFN 2.33 2.10 2.16 1.99 2.21 2.03 1.99 2.14 2.20 2.14 2.02 1.91 2.13 1.92

DARX 2.51 2.07 2.69 2.45 2.36 2.47 2.41 2.54 2.34 2.06 2.48 2.10 2.49 2.44
DPARX 2.46 2.41 2.53 2.56 2.48 2.51 2.26 2.58 2.38 2.30 2.41 2.34 2.49 2.51

4
MFN 1.99 2.00 2.01 1.82 1.97 1.88 1.92 1.93 1.81 1.77 1.79 1.70 1.82 1.71

DARX 2.16 1.91 2.36 2.24 2.20 2.17 2.28 2.40 1.80 1.86 2.40 2.06 2.23 2.36
DPARX 2.17 2.21 2.29 2.46 2.35 2.33 2.14 2.46 2.10 2.13 2.33 2.21 2.30 2.44

Table 5: Prediction accuracies for competing algorithms with di↵erent forecast steps over di↵erent countries
using the HealthMap data source.

Step Dataset AR BO CL CO CR EC GT HN MX NI PA PE PY SV US

1
MFN 2.81 3.13 2.63 2.58 2.91 2.77 2.63 2.73 2.50 2.61 2.54 2.69 2.51 2.61 3.78

DARX 3.00 2.69 3.11 2.79 2.44 2.89 2.75 2.91 2.85 2.86 2.60 2.65 2.75 2.64 3.71
DPARX 3.07 2.74 3.15 2.84 2.69 2.83 2.58 2.82 2.95 2.79 2.59 2.70 2.83 2.62 3.72

2
MFN 2.71 2.91 2.30 2.21 2.77 2.49 2.40 2.38 2.44 2.36 2.15 2.33 2.22 2.33 3.64

DARX 2.86 2.60 3.01 2.62 2.54 2.74 2.64 2.77 2.66 2.47 2.37 2.47 2.53 2.58 3.60
DPARX 2.78 2.60 2.88 2.67 2.62 2.71 2.44 2.72 2.60 2.50 2.45 2.58 2.58 2.60 3.61

3
MFN 2.44 2.30 2.42 2.07 2.31 2.14 2.28 2.01 2.19 2.12 1.99 2.00 1.97 1.95 3.35

DARX 2.58 2.18 2.78 2.49 2.35 2.63 2.51 2.62 2.48 2.15 2.49 2.33 2.48 2.51 3.41
DPARX 2.46 2.42 2.55 2.56 2.47 2.58 2.36 2.59 2.38 2.31 2.45 2.37 2.49 2.50 3.42

4
MFN 1.93 1.99 2.20 1.88 2.00 1.95 2.15 1.95 1.89 1.85 1.72 1.78 1.91 1.81 3.13

DARX 2.28 2.02 2.46 2.39 2.19 2.37 2.39 2.45 2.22 1.97 2.45 2.26 2.20 2.42 3.18
DPARX 2.17 2.21 2.30 2.44 2.34 2.42 2.25 2.47 2.12 2.14 2.37 2.25 2.30 2.47 3.21

Table 3: Prediction accuracies for competing algorithms with di↵erent forecast steps over di↵erent countries
using the weather data source.

Step Method AR BO CL CO CR EC GT HN MX NI PA PE PY SV US

1

ARX 2.94 2.51 3.10 2.90 2.21 2.81 2.83 2.96 2.25 2.18 2.78 2.51 2.84 2.83 3.51
MFN 2.99 3.01 2.88 2.53 2.78 2.81 2.77 2.83 2.61 2.70 2.56 2.82 2.66 2.79 3.81

DARX 3.09 2.84 3.17 2.84 2.57 2.94 2.83 2.89 2.91 2.77 2.72 2.67 2.79 2.72 3.71
DPARX 2.98 2.84 3.07 3.01 2.70 2.97 2.87 2.93 2.84 2.86 2.82 2.78 2.86 2.77 3.72

2

ARX 2.56 2.05 2.63 2.71 1.61 2.56 2.63 2.76 1.15 1.36 2.56 2.05 2.62 2.64 3.21
MFN 2.86 2.89 2.81 2.49 2.71 2.67 2.72 2.41 2.55 2.31 2.50 2.59 2.71 2.30 3.75

DARX 2.98 2.69 3.00 2.69 2.63 2.79 2.72 2.81 2.66 2.28 2.55 2.49 2.68 2.66 3.60
DPARX 2.67 2.73 2.86 2.83 2.66 2.79 2.78 2.78 2.62 2.49 2.71 2.63 2.64 2.68 3.61

3

ARX 2.25 1.65 2.21 2.50 1.06 2.30 2.39 2.59 0.60 0.94 2.42 1.72 2.39 2.46 2.92
MFN 2.49 2.38 2.41 2.33 2.45 2.31 2.32 2.10 2.21 2.11 2.19 2.22 2.40 2.08 3.64

DARX 2.68 2.32 2.68 2.57 2.52 2.72 2.50 2.65 2.47 2.00 2.52 2.32 2.54 2.53 3.41
DPARX 2.33 2.44 2.63 2.70 2.58 2.66 2.59 2.61 2.36 2.31 2.75 2.44 2.51 2.55 3.42

4

ARX 1.98 1.37 1.73 2.31 0.72 2.07 2.22 2.41 0.39 0.83 2.21 1.46 2.21 2.30 2.56
MFN 2.10 2.13 2.15 2.04 2.25 2.11 2.22 1.94 1.99 1.87 2.01 1.86 2.10 1.77 3.54

DARX 2.42 2.12 2.39 2.49 2.34 2.52 2.42 2.51 2.17 1.74 2.38 2.27 2.30 2.42 3.18
DPARX 2.10 2.23 2.32 2.64 2.38 2.52 2.55 2.45 2.06 2.15 2.72 2.38 2.27 2.53 3.20

Table 4: Prediction accuracies for competing algorithms with di↵erent forecast steps over di↵erent countries
using the GST data source.

Step Dataset AR BO CL CO CR EC GT HN MX NI PA PE PY SV

1
MFN 2.61 2.44 2.55 2.22 2.61 2.52 2.31 2.62 2.48 2.61 2.31 2.23 2.53 2.13

DARX 2.99 2.65 3.09 2.74 2.41 2.86 2.72 2.83 2.82 2.84 2.59 2.56 2.75 2.63
DPARX 3.07 2.74 3.15 2.85 2.72 2.80 2.51 2.80 2.96 2.77 2.59 2.66 2.82 2.61

2
MFN 2.50 2.33 2.31 2.10 2.44 2.29 2.11 2.43 2.37 2.39 2.20 2.01 2.27 2.00

DARX 2.83 2.54 2.94 2.57 2.53 2.69 2.58 2.72 2.59 2.40 2.35 2.40 2.54 2.51
DPARX 2.78 2.59 2.86 2.67 2.63 2.67 2.35 2.71 2.60 2.48 2.43 2.53 2.57 2.59

3
MFN 2.33 2.10 2.16 1.99 2.21 2.03 1.99 2.14 2.20 2.14 2.02 1.91 2.13 1.92

DARX 2.51 2.07 2.69 2.45 2.36 2.47 2.41 2.54 2.34 2.06 2.48 2.10 2.49 2.44
DPARX 2.46 2.41 2.53 2.56 2.48 2.51 2.26 2.58 2.38 2.30 2.41 2.34 2.49 2.51

4
MFN 1.99 2.00 2.01 1.82 1.97 1.88 1.92 1.93 1.81 1.77 1.79 1.70 1.82 1.71

DARX 2.16 1.91 2.36 2.24 2.20 2.17 2.28 2.40 1.80 1.86 2.40 2.06 2.23 2.36
DPARX 2.17 2.21 2.29 2.46 2.35 2.33 2.14 2.46 2.10 2.13 2.33 2.21 2.30 2.44

Table 5: Prediction accuracies for competing algorithms with di↵erent forecast steps over di↵erent countries
using the HealthMap data source.

Step Dataset AR BO CL CO CR EC GT HN MX NI PA PE PY SV US

1
MFN 2.81 3.13 2.63 2.58 2.91 2.77 2.63 2.73 2.50 2.61 2.54 2.69 2.51 2.61 3.78

DARX 3.00 2.69 3.11 2.79 2.44 2.89 2.75 2.91 2.85 2.86 2.60 2.65 2.75 2.64 3.71
DPARX 3.07 2.74 3.15 2.84 2.69 2.83 2.58 2.82 2.95 2.79 2.59 2.70 2.83 2.62 3.72

2
MFN 2.71 2.91 2.30 2.21 2.77 2.49 2.40 2.38 2.44 2.36 2.15 2.33 2.22 2.33 3.64

DARX 2.86 2.60 3.01 2.62 2.54 2.74 2.64 2.77 2.66 2.47 2.37 2.47 2.53 2.58 3.60
DPARX 2.78 2.60 2.88 2.67 2.62 2.71 2.44 2.72 2.60 2.50 2.45 2.58 2.58 2.60 3.61

3
MFN 2.44 2.30 2.42 2.07 2.31 2.14 2.28 2.01 2.19 2.12 1.99 2.00 1.97 1.95 3.35

DARX 2.58 2.18 2.78 2.49 2.35 2.63 2.51 2.62 2.48 2.15 2.49 2.33 2.48 2.51 3.41
DPARX 2.46 2.42 2.55 2.56 2.47 2.58 2.36 2.59 2.38 2.31 2.45 2.37 2.49 2.50 3.42

4
MFN 1.93 1.99 2.20 1.88 2.00 1.95 2.15 1.95 1.89 1.85 1.72 1.78 1.91 1.81 3.13

DARX 2.28 2.02 2.46 2.39 2.19 2.37 2.39 2.45 2.22 1.97 2.45 2.26 2.20 2.42 3.18
DPARX 2.17 2.21 2.30 2.44 2.34 2.42 2.25 2.47 2.12 2.14 2.37 2.25 2.30 2.47 3.21

Table 3: Prediction accuracies for competing algorithms with di↵erent forecast steps over di↵erent countries
using the weather data source.

Step Method AR BO CL CO CR EC GT HN MX NI PA PE PY SV US

1

ARX 2.94 2.51 3.10 2.90 2.21 2.81 2.83 2.96 2.25 2.18 2.78 2.51 2.84 2.83 3.51
MFN 2.99 3.01 2.88 2.53 2.78 2.81 2.77 2.83 2.61 2.70 2.56 2.82 2.66 2.79 3.81

DARX 3.09 2.84 3.17 2.84 2.57 2.94 2.83 2.89 2.91 2.77 2.72 2.67 2.79 2.72 3.71
DPARX 2.98 2.84 3.07 3.01 2.70 2.97 2.87 2.93 2.84 2.86 2.82 2.78 2.86 2.77 3.72

2

ARX 2.56 2.05 2.63 2.71 1.61 2.56 2.63 2.76 1.15 1.36 2.56 2.05 2.62 2.64 3.21
MFN 2.86 2.89 2.81 2.49 2.71 2.67 2.72 2.41 2.55 2.31 2.50 2.59 2.71 2.30 3.75

DARX 2.98 2.69 3.00 2.69 2.63 2.79 2.72 2.81 2.66 2.28 2.55 2.49 2.68 2.66 3.60
DPARX 2.67 2.73 2.86 2.83 2.66 2.79 2.78 2.78 2.62 2.49 2.71 2.63 2.64 2.68 3.61

3

ARX 2.25 1.65 2.21 2.50 1.06 2.30 2.39 2.59 0.60 0.94 2.42 1.72 2.39 2.46 2.92
MFN 2.49 2.38 2.41 2.33 2.45 2.31 2.32 2.10 2.21 2.11 2.19 2.22 2.40 2.08 3.64

DARX 2.68 2.32 2.68 2.57 2.52 2.72 2.50 2.65 2.47 2.00 2.52 2.32 2.54 2.53 3.41
DPARX 2.33 2.44 2.63 2.70 2.58 2.66 2.59 2.61 2.36 2.31 2.75 2.44 2.51 2.55 3.42

4

ARX 1.98 1.37 1.73 2.31 0.72 2.07 2.22 2.41 0.39 0.83 2.21 1.46 2.21 2.30 2.56
MFN 2.10 2.13 2.15 2.04 2.25 2.11 2.22 1.94 1.99 1.87 2.01 1.86 2.10 1.77 3.54

DARX 2.42 2.12 2.39 2.49 2.34 2.52 2.42 2.51 2.17 1.74 2.38 2.27 2.30 2.42 3.18
DPARX 2.10 2.23 2.32 2.64 2.38 2.52 2.55 2.45 2.06 2.15 2.72 2.38 2.27 2.53 3.20

Table 4: Prediction accuracies for competing algorithms with di↵erent forecast steps over di↵erent countries
using the GST data source.

Step Dataset AR BO CL CO CR EC GT HN MX NI PA PE PY SV

1
MFN 2.61 2.44 2.55 2.22 2.61 2.52 2.31 2.62 2.48 2.61 2.31 2.23 2.53 2.13

DARX 2.99 2.65 3.09 2.74 2.41 2.86 2.72 2.83 2.82 2.84 2.59 2.56 2.75 2.63
DPARX 3.07 2.74 3.15 2.85 2.72 2.80 2.51 2.80 2.96 2.77 2.59 2.66 2.82 2.61

2
MFN 2.50 2.33 2.31 2.10 2.44 2.29 2.11 2.43 2.37 2.39 2.20 2.01 2.27 2.00

DARX 2.83 2.54 2.94 2.57 2.53 2.69 2.58 2.72 2.59 2.40 2.35 2.40 2.54 2.51
DPARX 2.78 2.59 2.86 2.67 2.63 2.67 2.35 2.71 2.60 2.48 2.43 2.53 2.57 2.59

3
MFN 2.33 2.10 2.16 1.99 2.21 2.03 1.99 2.14 2.20 2.14 2.02 1.91 2.13 1.92

DARX 2.51 2.07 2.69 2.45 2.36 2.47 2.41 2.54 2.34 2.06 2.48 2.10 2.49 2.44
DPARX 2.46 2.41 2.53 2.56 2.48 2.51 2.26 2.58 2.38 2.30 2.41 2.34 2.49 2.51

4
MFN 1.99 2.00 2.01 1.82 1.97 1.88 1.92 1.93 1.81 1.77 1.79 1.70 1.82 1.71

DARX 2.16 1.91 2.36 2.24 2.20 2.17 2.28 2.40 1.80 1.86 2.40 2.06 2.23 2.36
DPARX 2.17 2.21 2.29 2.46 2.35 2.33 2.14 2.46 2.10 2.13 2.33 2.21 2.30 2.44

Table 5: Prediction accuracies for competing algorithms with di↵erent forecast steps over di↵erent countries
using the HealthMap data source.

Step Dataset AR BO CL CO CR EC GT HN MX NI PA PE PY SV US

1
MFN 2.81 3.13 2.63 2.58 2.91 2.77 2.63 2.73 2.50 2.61 2.54 2.69 2.51 2.61 3.78

DARX 3.00 2.69 3.11 2.79 2.44 2.89 2.75 2.91 2.85 2.86 2.60 2.65 2.75 2.64 3.71
DPARX 3.07 2.74 3.15 2.84 2.69 2.83 2.58 2.82 2.95 2.79 2.59 2.70 2.83 2.62 3.72

2
MFN 2.71 2.91 2.30 2.21 2.77 2.49 2.40 2.38 2.44 2.36 2.15 2.33 2.22 2.33 3.64

DARX 2.86 2.60 3.01 2.62 2.54 2.74 2.64 2.77 2.66 2.47 2.37 2.47 2.53 2.58 3.60
DPARX 2.78 2.60 2.88 2.67 2.62 2.71 2.44 2.72 2.60 2.50 2.45 2.58 2.58 2.60 3.61

3
MFN 2.44 2.30 2.42 2.07 2.31 2.14 2.28 2.01 2.19 2.12 1.99 2.00 1.97 1.95 3.35

DARX 2.58 2.18 2.78 2.49 2.35 2.63 2.51 2.62 2.48 2.15 2.49 2.33 2.48 2.51 3.41
DPARX 2.46 2.42 2.55 2.56 2.47 2.58 2.36 2.59 2.38 2.31 2.45 2.37 2.49 2.50 3.42

4
MFN 1.93 1.99 2.20 1.88 2.00 1.95 2.15 1.95 1.89 1.85 1.72 1.78 1.91 1.81 3.13

DARX 2.28 2.02 2.46 2.39 2.19 2.37 2.39 2.45 2.22 1.97 2.45 2.26 2.20 2.42 3.18
DPARX 2.17 2.21 2.30 2.44 2.34 2.42 2.25 2.47 2.12 2.14 2.37 2.25 2.30 2.47 3.21

Prediction accuracy on 
other input sources



Model Similarity

Table 1: Data source characteristics. Delayed refers to whether the data source is available for a given week
in the same week or later. Revised refers to whether older values can get revised in future updates.

Characteristics Num. Dimensions Delayed? Revised? Temporal Resolution Spatial Resolution

PAHO/CDC 1 Yes Yes Weekly Country
Google Flue Trends (GFT) 1 No Yes Weekly Country
Google Search Trends (GST) 114 No Yes Weekly Country
Weather 5 No No 6 hours ! Weekly 4 locations ! Country
HealthMap 114 ⇥ 3 No No Daily ! Weekly Country
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Figure 3: The distance matrix obtained from our
learned DPARX model (bottom figure), associated
with the ground truth ILI case count series (top
figure) on the AR dataset. We can observe the
strong seasonality automatically inferred in the ma-
trix. Each element in the matrix is the Euclidean
distance between a pair of the learned models at
two corresponding time points after training. For
the top figure, the x axis is the index of the weeks;
the y axis is the number of ILI cases. For the bottom
figure, both x and y axes are the index of the time
points. Note that the starting time point (index 0)
for the distance matrix is week 15 of the ILI case
count series.

In the following experiments, we present the prediction ac-
curacy, which is 4 � error, on di↵erent countries to show
the performance of di↵erent prediction models. A score of 4
thus indicates a perfect forecast.

3.3 Model Similarity
First, we conduct experiments to investigate the model

similarities posited by our proposed algorithm. In this ex-
periment, we calculate the distance between all pairs of mod-
els learned by DPARX during a period of time on the AR
dataset. We present the distance matrix associated with the
ground truth ILI case count series in Figure 3. We see that
the distance matrix has a strong seasonal pattern, which is
consistent with the pattern of the ILI case count series. At
the beginning of each flu season, the model is significantly

di↵erent from the rest of the models at other time points.
This result demonstrates that ILI case counts have a strong
periodic pattern and that the dynamic modeling approach
successfully captures this pattern. It also validates the ne-
cessity of conducting this level of modeling for flu forecast-
ing.
In the next experiment, we run our proposed DPARX

method on the US dataset under three di↵erent model sim-
ilarity graphs including the fully connected graph, the 3-
nearest neighbor graph and the seasonal 3-nearest neighbor
graph. We then calculate the three corresponding distance
matrices of the learned models, which are shown in Figure 4.
The patterns in the three distance matrices are very simi-
lar. However, the distances between the pairs of models are
smaller for the fully connected similarity graph. Without
strong prior knowledge, the fully connected similarity graph
is preferred, as during di↵erent seasons the target signal may
still be very di↵erent. In the following experiments, we will
use the fully connected similarity graph for the regulariza-
tion term.
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Figure 4: Model distance matrices for the US
dataset. The three matrices are derived from
the fully connected similarity graph, the 3-nearest
neighbor similarity graph and the seasonal 3-nearest
neighbor similarity graph, from left to right corre-
spondingly.

3.4 Forecasting Results
In the ILI cast count forecast experiments, we use the data

record from all 15 countries. All the case count data are as-
sociated with several data sources as listed in Table 11. We
start with 50 given time points and test the prediction re-
sult on the remaining time points. We run all the competing
methods in an online manner: the models are re-trained and
updated after the arrival of values at every additional time
point. For the DARX and DPARX models, we use the same
parameter settings: p = 1, b = 15 for GFT and Weather
data sources as these data sources have relatively small di-
mension; p = 1, b = 4 for GST and HealthMap data sources
as these data sources have relatively high dimension. The
ARX model does not provide numerical stable results for
high dimensional data. Thus we present its results on GFT
and Weather data sources with p = 1, b = 15. Likewise,
the training of the SARX model is very time consuming,

1The GFT information is provided only for countries AR,
BO, CL, MX, PE, PY and the US.

Table 1: Data source characteristics. Delayed refers to whether the data source is available for a given week
in the same week or later. Revised refers to whether older values can get revised in future updates.

Characteristics Num. Dimensions Delayed? Revised? Temporal Resolution Spatial Resolution

PAHO/CDC 1 Yes Yes Weekly Country
Google Flue Trends (GFT) 1 No Yes Weekly Country
Google Search Trends (GST) 114 No Yes Weekly Country
Weather 5 No No 6 hours ! Weekly 4 locations ! Country
HealthMap 114 ⇥ 3 No No Daily ! Weekly Country
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Figure 3: The distance matrix obtained from our
learned DPARX model (bottom figure), associated
with the ground truth ILI case count series (top
figure) on the AR dataset. We can observe the
strong seasonality automatically inferred in the ma-
trix. Each element in the matrix is the Euclidean
distance between a pair of the learned models at
two corresponding time points after training. For
the top figure, the x axis is the index of the weeks;
the y axis is the number of ILI cases. For the bottom
figure, both x and y axes are the index of the time
points. Note that the starting time point (index 0)
for the distance matrix is week 15 of the ILI case
count series.

In the following experiments, we present the prediction ac-
curacy, which is 4 � error, on di↵erent countries to show
the performance of di↵erent prediction models. A score of 4
thus indicates a perfect forecast.

3.3 Model Similarity
First, we conduct experiments to investigate the model

similarities posited by our proposed algorithm. In this ex-
periment, we calculate the distance between all pairs of mod-
els learned by DPARX during a period of time on the AR
dataset. We present the distance matrix associated with the
ground truth ILI case count series in Figure 3. We see that
the distance matrix has a strong seasonal pattern, which is
consistent with the pattern of the ILI case count series. At
the beginning of each flu season, the model is significantly

di↵erent from the rest of the models at other time points.
This result demonstrates that ILI case counts have a strong
periodic pattern and that the dynamic modeling approach
successfully captures this pattern. It also validates the ne-
cessity of conducting this level of modeling for flu forecast-
ing.
In the next experiment, we run our proposed DPARX

method on the US dataset under three di↵erent model sim-
ilarity graphs including the fully connected graph, the 3-
nearest neighbor graph and the seasonal 3-nearest neighbor
graph. We then calculate the three corresponding distance
matrices of the learned models, which are shown in Figure 4.
The patterns in the three distance matrices are very simi-
lar. However, the distances between the pairs of models are
smaller for the fully connected similarity graph. Without
strong prior knowledge, the fully connected similarity graph
is preferred, as during di↵erent seasons the target signal may
still be very di↵erent. In the following experiments, we will
use the fully connected similarity graph for the regulariza-
tion term.
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Figure 4: Model distance matrices for the US
dataset. The three matrices are derived from
the fully connected similarity graph, the 3-nearest
neighbor similarity graph and the seasonal 3-nearest
neighbor similarity graph, from left to right corre-
spondingly.

3.4 Forecasting Results
In the ILI cast count forecast experiments, we use the data

record from all 15 countries. All the case count data are as-
sociated with several data sources as listed in Table 11. We
start with 50 given time points and test the prediction re-
sult on the remaining time points. We run all the competing
methods in an online manner: the models are re-trained and
updated after the arrival of values at every additional time
point. For the DARX and DPARX models, we use the same
parameter settings: p = 1, b = 15 for GFT and Weather
data sources as these data sources have relatively small di-
mension; p = 1, b = 4 for GST and HealthMap data sources
as these data sources have relatively high dimension. The
ARX model does not provide numerical stable results for
high dimensional data. Thus we present its results on GFT
and Weather data sources with p = 1, b = 15. Likewise,
the training of the SARX model is very time consuming,

1The GFT information is provided only for countries AR,
BO, CL, MX, PE, PY and the US.

dij = wi − w j 2

model distance matrix

ILI case count series



Long Term Prediction

Comparison of seasonal characteristics for Mexico using different algorithms 
for one-step ahead prediction. Blue vertical dashed lines indicate the actual 
start and end of the season. ILI season considered: 2013.
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Figure 5: Comparison of seasonal characteristics for
Mexico using di↵erent algorithms for one-step ahead
prediction. Blue vertical dashed lines indicate the
actual start and end of the season. ILI season con-
sidered: 2013.

the forecasting performance to be significantly improved by
properly fusing the data sources and the model. At the end,
we would like to mention that though our paper focuses
on predicting ILI case counts, the proposed dynamic ARX
model is a general time series modeling technique and it is
broadly applicable to a wider range of time series prediction
problems.
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Conclusion

• ILI case count prediction is an important time 

series prediction problem. 

• Limitation of the conventional time series model. 

• Dynamic model is more appropriate. 

• Further work: fuse different indicator data sources 

together.



Thanks!


